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Abstract – Accuracy of information in any communication 
system is very critical. Use of Forward Error Correction (FEC) 
to lower the probability of error and increase transmission 
distance has become widespread. Reed-Solomon is a block FEC, 
capable of correcting multiple errors, specifically focusing on 
burst errors, making it popular for storage devices, wireless and 
mobile communication units. In this paper we have presented, 
discussed and analyzed the Reed Solomon encoder and decoder 
structures implemented in the Digital Video Broadcasting 
systems. 
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I. INTRODUCTION 

Error correcting codes (channel coding) are one of the 
solutions available to improve the digital communication 
quality. The purpose of channel coding is to introduce, in a 
controlled manner, some redundancy in the binary 
information sequence to overcome the effects of noise and 
interference encountered during the transmission through the 
channel. Reed-Solomon codes are block error correction 
codes with burst error-correcting capabilities that have found 
widespread use in storage devices and digital communication 
systems [1, 8]. In particular, concatenated coding employing 
an inner convolutional code combined with a Reed-Solomon 
outer code constitutes an attractive scheme that is commonly 
encountered in many applications, and in particular in the 
digital video broadcasting systems (DVB) [9, 10]. 

RS codes are Maximum Distance Separable (MDS), known 
to be the most powerful linear codes for their class, and have 
the ability to correct both errors and erasures, defined as errors 
with identified error locations. 

For a typical channel, the addition of RS coding allows the 
system to operate within approximately 4 dB of the Shannon 
capacity. The resulting benefit translates into higher data 
rates, lower bit-error rates (BER), greater transmission 
distance, and greater immunity to interference effects [2]. 

II. PROPERTIES OF REED – SOLOMON ENCODER 

Reed Solomon encoding is a block encoding scheme and 
partially is specified as an RS (n, k), where n refers to the 

output codeword length and k refers to the input word length, 
as shown in Fig. 1. The RS code is based on the Galois field 
GF (28), and therefore has a symbol size of 8 bits. The 
difference n–k=2t is the number of parity symbols have been 
appended to make the encoded block. An RS decoder can 
correct up to (n–k)/2 or t symbols, i.e. any t symbols can be 
corrupted in any way and the original symbols can be 
recovered. The RS (255, 239) was chosen which processes a 
data block of 239 symbols and can correct up to 8 symbol 
errors by calculating 16 redundant correction symbols. As an 
MPEG-2 packet is 188 bytes long, the code was shortened, i.e. 
the first 51 information bytes were set to zero and not 
transmitted at all. In this way the RS (204, 188) is generated 
[4]. Thus the DVB code splits the message into blocks 188 
symbols long. The parity symbols (2t=204 – 188=16) are then 
appended to produce the full 204 symbol long code. Up to 
t=16/2=8 symbol errors can be then corrected. 
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k symbols 2t symbols
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Fig.1 Code word of RS (n,k) code 

The encoder forms a code word xn-km(x) + r(x) by means of 
the following equation: 
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where the divisor, g(x) is known as the generator polynomial. 
It is a polynomial of degree (n-k) and which is a factor of 
(xn+1). To maximize the minimum distance between codes, 
the roots of this polynomial should all be consecutive. This is 
a direct consequence of the BCH bound, which states that the 
minimum distance is always larger than the number of 
consecutive factors of g(x). The system used adapted a 
generator polynomial with roots from α1 to α32. 

The term xn-k is a constant power of x, which is simply a 
shift upwards n-k places of all the polynomial coefficients in 
m(x). It happens as part of the shifting process in the 
architecture below. The remainder after the division r(x) 
becomes the parity. By concatenating the parity symbols on to 
the end of the k message symbols, an n coefficient polynomial 
is created which is exactly divisible by g(x). 

Eq. (1) also implies that the generator polynomial is a factor 
of all possible code words. 

The symbols in Reed Solomon coding are elements of a 
Galois Field (finite field). Encoding is achieved by appending 
the remainder of a Galois field polynomial division into the 
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message. This division is done by a Linear Feedback Shift 
Register (LFSR) implementation. The RS encoder with 
internal feedback connection corresponding to g(x) is shown 
on Fig. 2. 
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Fig.2 RS encoder with LFSR 

The encoder shown on Fig. 2 is a 2t tap shift register, where 
each register is m bits wide. The multiplier coefficients g0 to 
g(2t-1) are coefficients of the RS generator polynomial. The 
coefficients are fixed, which can be used to simplify the 
multipliers if required. The only hard bit is working out the 
coefficients, and for hardware implementations the values can 
often be hard coded. 

At the beginning of a block all the registers are set to zero. 
From then on, at each clock cycle the symbol in each register 
is added to the product of the feedback symbol and the fixed 
coefficient for that tap, and passed on to the next register. The 
symbol in the last register becomes the feedback value on the 
next cycle. When all n input symbols have been read in, the 
parity symbols are sitting in the register, and it just remains to 
shift them out one by one. 

III. REED – SOLOMON DECODER 

Decoding RS codes involves the extraction of two 
information entities from the received word. These are the set 
of Partial Syndromes, and the Error Locator Polynomial. 
From these two parameters, Error Locations and Error 
magnitudes are extracted, and are directly applied upon the 
received word to extract the original, corrected message [6]. 

A Generator Polynomial defines each RS code 
configuration. The specific configurations of the encoder and 
decoder are determined by this polynomial. In the decoder, the 
partial syndromes are computed by treating the received 
information as a polynomial and evaluating it at each of the 
roots of the Generator Polynomial. This operation is realized 
in hardware as a set of shift-register assemblies connected in 
parallel. The Partial Syndromes are computed simultaneously 
and are passed on afterwards to the Error Locator Polynomial 
unit. The Error Locator Polynomial is computed directly from 
the Partial Syndromes and a popular algorithm used to extract 
this is the Berlekamp-Massey Algorithm. The magnitudes of 
the corresponding errors are solved using the Forney 
Algorithm. An error-correcting block uses the computed error 
magnitudes to adjust the received codeword [5]. 
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Fig.3 RS Decoder block diagram 

The RS decoder consists of five major blocks as shown in 
Fig. 3. 

The first step in decoding the received symbol is to 
determine the data syndrome. A codeword’s syndrome s(x) is 
the remainder of the division of the received word r(x) by the 
generator polynomial, as implied by the following equation: 
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The received word, as seen in Eq. 3, can be decomposed 
into the code word c(x) and the error component e(x). Further 
manipulation of Eq. 2 leads to Eq. 5. 
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Since all code words are divisible by the generator 
polynomial, only the error component will yield a remainder. 
Eq. 5 and 6 illustrates this: 
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It can now be seen in Eq. 6 that the syndrome is 
independent of the message information and depends only on 
the error component. 

In most systems, partial syndromes are computed instead of 
the syndrome, for reasons of simpler hardware 
implementation. In the computation of a partial syndrome, the 
divisor is no longer the entire generator polynomial, but only 
one of its factors, as seen in Eq. 7. There will be n-k partial 
syndromes for every received word, since the generator 
polynomial has n-k factors. 
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Note that the remainder sk in Eq. 7 can be obtained by 
evaluating r(x) at ak, as: 
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Fig.4 Partial Syndrome Calculator 

Syndrome calculation can be done by an iterative process, 
such that the answer (2t syndrome symbols) is available as 
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soon as the last parity symbol has been read in. The circuit 
shown on Fig. 4 will generate the i'th syndrome, 2t of these 
will be needed for the full syndrome decoder. The syndromes 
depend only on the errors, not on the underlying encoded data. 

A. Error Polynomial lambda – Berlecamp – Massey and 
Euclids algorithm 

In Reed-Solomon decoding, two items of information are 
required to extract the original message: the error locations 
and the error magnitudes. 
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Fig.5 Simplified Berlekamp Massey algorithm 

The Error Locator Polynomial is a polynomial whose roots 
directly define the error locations in the received word. This 
polynomial could be computed directly from the partial 
syndromes [7]. A number of methods exist to perform this 
computation, and the method that is most popular and most 
suited to this system is the Berlekamp-Massey Algorithm. 

The Berlekamp-Massey algorithm is a shift-register 
synthesis algorithm [8] and the simplified block scheme of the 
algorithm is show on Fig.5. It takes as input the n-k partial 
syndromes and outputs the error locator polynomial σ(x). 

The algorithm aims to find an LFSR of minimal length such 
that the first (n-k) elements in the LFSR output sequence are 

the (n-k) syndromes. The taps of this shift register are the 
coefficients of the desired error locator polynomial, σ (x) [8]. 

The algorithm iteratively solves the error locator 
polynomial by solving one equation after another and 
updating the error locator polynomial. If it turns out that it 
cannot solve the equation at some step, then it computes the 
error and weights it, increases the size of the error polynomial, 
and does another iteration. A maximum of 2t iterations are 
required. For n symbol errors, the algorithm gives a 
polynomial with n coefficients. At this point the decoder fails 
if there are more than t errors, and no corrections can be 
made. Doing so might actually introduce more errors than 
there were originally. 

B. Error Polynomial Roots 

After the Error Locator Polynomial has been computed, the 
roots of this polynomial have to be calculated in order to 
know the error locations. This is done by performing the 
Chien Search, which evaluates the Error Locator Polynomial 
at all elements of the GF(256) field. The algorithm checks if 
σ(ap) equals zero, p = 0, 1, 2 …., n, then ap is a root of the 
polynomial, and α-p is an error location, Xp. 

Solving the key equation (Eq. 7) [7] determines the error 
evaluator or error magnitude polynomial, Ω(x): 

 ( ) ( ) ( ) knxxxxS −Ω= modσ   (9) 

C. Error Magnitudes - Forney Algorithm 

An efficient way of computing Ω(x) is to perform parallel 
computation of σ(x) [9]. Solution to the key equation may be 
derived as follows: 
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This leads to a direct computation of Ω(x), which requires 
fewer multiplications than the iterative algorithm [3]. 

The Forney Algorithm is used to compute for the error 
magnitudes, Yi, corresponding to the respective error 
locations. Using the following equation: 
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where 1−
iX  indicates the root as computed from the Chien 

Search, and σ’(x) the derivative of the error locator 
polynomial. 

D. Error Correct 

The error corrector block takes the received code and 
performs XOR-operation with the corresponding error 
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magnitudes computed at the respective error locations to 
attain the original message stream (Eq. 13). 

 ( ) ( ) iii YXrXc ⊕=   (13) 

IV. SIMULATION 

We have presented the results of conducted simulation of 
Reed Solomon codes with following n and m parameters in 
according to DVB standard – RS (255, 239), RS (255, 235), 
RS (255, 223), RS (255, 205). The parameters setting of 
convolution code, rate R=m/n selection in according to DVB 
standard – 1/2, 2/3, 3/4, 5/6, 7/8 and interleaver depth I 
settings – up to 20 [4]. 
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Fig. 6. Residual Bit – Error Rate value of various RS codes 

Independently of whether the encoding and decoding is in 
frequency or time domain, the efficiency of the RS code is the 
same. The residual bit-error rate (BER) of various RS codes 
based on GF (28) is shown in Figure 6. Although the RS codes 
are symbol-oriented codes, the analysis of the efficiency takes 
bit errors into account. The efficiency of the code increases 
with an increase in the number of test symbols. At an input 
bit-error rate of 2.10−3 the residual bit error rate of the RS 
(255, 205) code is approx 1.10−10 – the coding gain is thus 
more than 10 to the power of 7 – whereas in the case of the 
RS (255, 239) code at the same input bit-error rate the output 
bit-error rate is 9.10−4 – the coding gain is only slightly greater 
than 0.5. For all DVB transmission standards a modified 
(shortened) RS (255, 239) code is used which makes it 
possible residual bit-error rate of approx 1.10−11 at an input 
bit--error rate of 2.10−4 while correcting up to 8 symbol errors 
per block. 

The residual bit-error rate of convolutional codes of rate R 
is a function of Eb/N0 (energy transmitted per bit divided by 
the noise-power density of the white Gaussian noise) and the 
parameter K describes the length of the code. The 
performance of the error correction increases with increased 
K. For the DVB standard a convolutional code of rate R=1/2 
with a constraint length K=7 is used. With Eb/N0 = 3.2 dB it is 
possible to achieve a bit-error rate of less than 2.10−4 at the 
output of the decoder, this ratio corresponds to the maximum 
of the bit-error rate at the input of the RS decoder, so finally a 

bit-error rate at the output of the RS decoder of less than 
1.10−11 is obtained. 

V. CONCLUSION 

This paper has provided an overall view of the Reed 
Solomon codes implemented in digital television broadcast 
standards and we have conducted simulation with various RS 
codes. From the simulation is evidence that the efficiency of 
the codes increases with an increase in the number of test 
symbols. 

Reliability of information is critical in any communication 
systems. Use of error-control codes reduce interference 
effects, and FECs in general, eliminate the need for 
retransmission of data streams. The theoretical performance of 
Reed-Solomon codes in bursty noise channels makes it a very 
good choice for FEC. 
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