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Abstract – In this paper we make visual representation of the 
data we obtain from the applications that implement the GA, 
which clearly shows the fitness value minimization over the 
generations and the impact of the number of chromosomes on 
the fitness value and the time required to find the optimal 
solution. 
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I. INTRODUCTION 

Genetic algorithms (GA) are search and optimization 
algorithms that use the theory of evolution as a tool to solve a 
problem in science and engineering. They incorporate the idea 
of survival of the strongest in a search algorithm that provides 
a searching method which does not necessarily needs to 
examine every possible solution in a given practice area to 
achieve good result. [18] 

The main effect of GA is in the parallel nature of its search. 
They implement powerful form of “hill climbing” which 
supports multiple solutions, eliminate those who do not 
promise, and improve the best solution. [1] Fig. 1 shows 
several solutions that converge to the optimal points in the 
search space. Initially, the solutions are spread through the 
space of possible solutions. After several generations, they 
tend to group (cluster) around the areas with a higher quality 
solution. 

 
Fig. 1. Distribution of candidate solutions in Generation 1 (the black 
points on the curve) and Generation N (the gray points on the curve) 

 
The process of GA generally consists of the following 

steps: Encoding, Evaluation, Crossover, Mutation and 
Decoding [18]. Once all of this is done, a new generation is 

evolved and the process repeats until they meet some stopping 
criterion. At this level the individual who is closest to the 
optimal solution is decoded and the process is completed. 

II. SOLVING THE TRAVELING SALESMAN PROBLEM 

This problem is well known and is a standard problem for 
testing search algorithms of this type. The basic problem 
consists of the following: the traveling salesman is required to 
pass n given cities, but each city to visit only once. The 
applied algorithm has to find the minimum time for 
performing such a journey through the cities.  

A. Problem Complexity 

The traveling salesman problem is of particular importance 
because it is a classic example of NP-hard (non-deterministic 
polynomial time hard) problem, that so far can be solved only 
in exponential time. It is a classic problem with great 
computational complexity. If there are n cities, then the 
maximum number of possible plans to travel between towns is 
(n-1)!. You can create a simple algorithm which examines all 
possible paths and comes up with the shortest one. But the 
main problem is that the time required for algorithm execution 
grows with tremendous speed as the number of cities 
increases. If there are 25 cities, then the algorithm must look 
24! possible routes. 24! is approximately 6.2• . Even if you 
use a computer that can investigate one million routes per 
second, it would take about 6.2• /  = 6.2• seconds to solve the 
problem. This is approximately 1.96•  years.  

By using dynamic programming techniques the problem 
can be solved in O( n2 ) time. Although this solution increases 
exponentially, it is much better than O(n!). 

B. Implementation 

In our implementation we chose the encoding where each 
gene in the chromosome represents a city, and the 
chromosome represents the order in which the traveling 
salesman would move. We use an implementation with 25 
cites and we must not forget that the salesman should visit 
each city only once. 

 

 
Fig. 2. A chromosome which represents one of the possible solutions  

 
The fitness function that characterizes each chromosome, 

represents the total length of the route from the first to the last 
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gene (city) moving according to the order of the genes in the 
chromosome. If the cities are represented with x and y 
coordinates in 2D coordinate system, then we calculate the 
distance between them according the Eq.1: 

                        ( ) ( )221
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The fitness value of each chromosome is the sum of all 
distances between the genes and the goal of this GA is to 
minimize this function. 

When starting the application it is necessary to initialize a 
starting population with a given number of chromosomes (in 
our application this number is 150). Once created, this 
population should provide a method for crossing into the next 
generation where these chromosomes are replaced with new 
chromosomes by applying the GA operators. The best solution 
from the current generation is saved and added to the new 
generation, if it does not already exist there. All this is 
repeated a number of times, which equals the number of 
generations in our application. The latest generation of 
chromosomes should provide the best solutions.  

C. Graphical Representation 

Data obtained from the program that implements the GA 
are visually presented in the form of a graph from which we 
can see the progress of the GA’s fitness value minimization 
over the generations. Also shown is the data for the smallest 
fitness value, generation of its occurrence and the solution 
itself (the chromosome with the smallest fitness value). This 
application is developed in Gambas under Linux Ubuntu 7.04 
and its appearance is shown in Fig.3. 

 

 
Fig. 3. Application for fitness value visualization over the 

generations 
 

Initially, for the program execution we take population of 
150 chromosomes, each composed of 25 genes (as the number 
of cities). For algorithm execution we use 300 generations to 
obtain the results shown in Fig. 3. From the figure we can see 
that the population is advancing toward a population with 
slightly better features. The gray cloud represents all the 
solutions in a generation, and in each of these generations the 
best solution is shown with a red line. As it can be seen in the 

figure, the best fitness value occurs in generation 114, with 
the best fitness value of 354.63 and the exact solution is: 9, 1, 
2, 6, 8, 5, 3, 4, 7, 11, 10, 12, 14, 16, 21, 25, 22, 23, 24, 20, 15, 
13, 17, 18, 19. 

Within this visualization we made an analysis on the impact 
of the number of chromosomes on the fitness value and the 
time required to find the optimal solution. Moreover, we got 
the results shown in Table I. 

TABLE I 
VARIABLE NUMBER OF CHROMOSOMES 

No.of chromosomes No.of generations Fitness value Time  (sec) 
10 300 618,120 0,661 
25 300 363,695 1,263 
50 300 362,085 1,886 
100 300 356,515 4,545 
150 300 354,634 6,57 

 
Fig.4 (a), which illustrates the behavior of the fitness value 

when the number of chromosomes changes, shows that when 
the number of chromosomes is very small (10) the fitness 
value is significantly higher (618.120) according to the rest 4 
examined cases (number of chromosomes = 25, 50, 100, 150) 
where it slightly improves.  The graph in (b) illustrates that by 
increasing the number of chromosomes we get almost linear 
increase in time required for finding the optimal solution (the 
smallest distance between cities). The time increases slightly 
from 0.661, 1.263, 1.886, 4.545 to 6.57 sec, as the number of 
chromosomes gets bigger and bigger. 
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(b) 

Fig. 4. Diagram of the influence of the number of chromosomes on 
the fitness value and the time  
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From the above analysis we can establish that when the 
number of chromosomes per generation is very small, it 
significantly affects the fitness value of the best solution 
found, but in further cases, there is almost no change in the 
fitness value of the best solution.  

III. SOLVING THE 2D PACKING PROBLEM 

The packing problem is actually a way of finding the 
optimal solution how to collect a given number of boxes 
(packages) in a large enclosed space. The problem is very 
easy to set and define, but it is quite difficult to solve. In 
mathematical terms speaking, as the traveling salesman 
problem, this problem is NP-hard, which means that when 
given a set of boxes and a space, it is very difficult to answer 
questions such as: Which is the best way to pack up the boxes, 
which would be the optimal solution and how good it would 
be. [19] 

A. Problem Complexity 

The packing problem is quite complex. When the number 
of packages is small the problem is relatively simple, but the 
complexity of the problem grows exponentially with the 
increase in the number of packages. For example, the number 
of possible combinations of 20 packages that can be oriented 
in 2 directions is: 

2420 102,551082!20)21)...(219()220( ×=⋅=⋅⋅⋅⋅  
 First we have a choice of 20 packages that can be placed in 

2 directions in the space, then we have 19 other packages to 
choose from, which can also be placed in 2 directions, etc.  

 If you perform a "brute force" test on this small problem of 
packing with 20 packages in 2D space, it will require a 
computer capable of checking millions of combinations of 
packings in a second, and still will need more than 10 years to 
complete the process. However, because GA use evolution to 
improve the solution, it relatively quickly starts to improve 
and becomes significantly better for a short time (several 
minutes), even when performing on relatively weak computer. 

B. Implementation 

In our implementation we selected the encoding where each 
gene in the chromosome is a package (number of packages 
equals 20), together with its orientation, and the chromosome 
represents the order in which they should be packed in the 
enclosed space (as shown in Fig. 5). The second field of each 
gene in the chromosome indicates whether the corresponding 
package should be rotated or not. If this field is set to true then 
the corresponding package is rotated from its initial position, 
and otherwise (false) it remains in the same orientation. 

 

 
Fig.5. A chromosome which represents one of the possible solutions 

 
The cost of each chromosome is calculated as the space 

wasted in the enclosed space, after all the packages are packed 
according to Eq.2: 

                                 cb
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⋅
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where b is the highest point on the top package in the 

enclosed space, c is the width of the space, and a is the total 
area of the packages. So the optimal solution would have a 
cost of 0, if the area of the space is equal to the area of the 
boxes (packages). 

At the start of the application we initialize a starting 
population with randomly generated chromosomes. As input, 
the application receives a .txt file that contains information 
about the height and the width of the packages. [19] Once 
created, this population provides a method for crossing into 
the next generation where these chromosomes are replaced 
with new chromosomes by applying the GA operators. All 
this is repeated a number of times and the latest generation of 
chromosomes should provide the best solutions. 

C. Graphical Representation 

As with the program for travelling salesman, data obtained 
from the program is visually represented in graph from which 
you can see the progress of the GA. Initially, for the execution 
of the program we take a population of 100 chromosomes, 
each composed of 20 genes (as the number of packages). 
During the execution it can be seen that the population 
gradually advances towards a population with better features. 
For algorithm execution we use 50000 generations to obtain 
the results shown in Fig.6. During the execution it can be seen 
that the population gradually advances towards a population 
with better features. It may be noted that after 50000 
generations we obtain a fitness value of ≈ 8.9%, which is 
found in the 9069th generation and the exact solution is: 16, 0, 
4, 12, 14, 15, 9, 1, 8, 17, 3, 13, 6, 7, 11, 5, 2, 10. 

 

 
Fig. 6.  Application for fitness value visualization over the 

generations 
 

Fig.7 is made based on analysis conducted on the impact of 
the number of chromosomes to the fitness value and the time 
required to find the optimal solution. Within this analysis were 
obtained the results shown in Table II. 
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TABLE II 
VARIABLE NUMBER OF CHROMOSOMES 

No. of chromosomes  No. of generations Fitness value Time (sec) 
10 50000 0,11884 74.069 
25 50000 0,09978 145.598 
50 50000 0,09489 253.611 
100 50000 0,09489 475.014 
150 50000 0,08995 747.399 

 
Fig.7 illustrates the dependence of the fitness value and the 

time of the change in the number of chromosomes. At the 
graph in (a) it can be seen that when the number of 
chromosomes is very small (10) the fitness value is 
significantly higher (0.11884) in comparison to the rest 4 
cases examined (25, 50, 100, 150) where it slightly improves 
as the number of chromosomes increases. The graphs in (b) 
shows that we have almost linear increase in time required for 
finding the optimal solution (packing with the smallest waist 
space). The time gradually increases from 74.069, 145.598, 
253.611, 475.014,to 747.399 sec. 
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(b) 

Fig. 7. Diagram of the influence of the number of chromosomes on 
the fitness value and the time  

 
It may be concluded that increasing the number of 

chromosomes significantly affects the fitness value of the best 
solution found, meaning that as many generations we have as 
more likely that we will find a solution with minimal waist 
space on packing. 

 
 

IV. CONCLUSION 

With regard to what GA do best, which is an iterative 
improvement of the result, the conclusion has to be that the 
problems based on search, as the problem of packing and the 
traveling salesman problem, there are few other tools that are 
able to compete with the GA. One very interesting question in 
the analysis of this class of problems is whether it is worth 
spending many hours on expensive workstation to obtain a 
solution close to the optimum, or to work a few minutes on 
cheap personal computer (PC) to get “good enough” results 
for these applications. 
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