

Impact of the Number of Chromosomes on the Fitness
Value Improvement in Standard GA Applications

Ivana Stojanovska1, Agni Dika2 and Blerta Prevalla3

Abstract – In this paper we make visual representation of the
data we obtain from the applications that implement the GA,
which clearly shows the fitness value minimization over the
generations and the impact of the number of chromosomes on
the fitness value and the time required to find the optimal
solution.

Keywords – Optimization, Chromosome, Fitness value,
Generation, Visualization.

I. INTRODUCTION

Genetic algorithms (GA) are search and optimization
algorithms that use the theory of evolution as a tool to solve a
problem in science and engineering. They incorporate the idea
of survival of the strongest in a search algorithm that provides
a searching method which does not necessarily needs to
examine every possible solution in a given practice area to
achieve good result. [18]

The main effect of GA is in the parallel nature of its search.
They implement powerful form of “hill climbing” which
supports multiple solutions, eliminate those who do not
promise, and improve the best solution. [1] Fig. 1 shows
several solutions that converge to the optimal points in the
search space. Initially, the solutions are spread through the
space of possible solutions. After several generations, they
tend to group (cluster) around the areas with a higher quality
solution.

Fig. 1. Distribution of candidate solutions in Generation 1 (the black
points on the curve) and Generation N (the gray points on the curve)

The process of GA generally consists of the following

steps: Encoding, Evaluation, Crossover, Mutation and
Decoding [18]. Once all of this is done, a new generation is

evolved and the process repeats until they meet some stopping
criterion. At this level the individual who is closest to the
optimal solution is decoded and the process is completed.

II. SOLVING THE TRAVELING SALESMAN PROBLEM

This problem is well known and is a standard problem for
testing search algorithms of this type. The basic problem
consists of the following: the traveling salesman is required to
pass n given cities, but each city to visit only once. The
applied algorithm has to find the minimum time for
performing such a journey through the cities.

A. Problem Complexity

The traveling salesman problem is of particular importance
because it is a classic example of NP-hard (non-deterministic
polynomial time hard) problem, that so far can be solved only
in exponential time. It is a classic problem with great
computational complexity. If there are n cities, then the
maximum number of possible plans to travel between towns is
(n-1)!. You can create a simple algorithm which examines all
possible paths and comes up with the shortest one. But the
main problem is that the time required for algorithm execution
grows with tremendous speed as the number of cities
increases. If there are 25 cities, then the algorithm must look
24! possible routes. 24! is approximately 6.2• . Even if you
use a computer that can investigate one million routes per
second, it would take about 6.2• / = 6.2• seconds to solve the
problem. This is approximately 1.96• years.

By using dynamic programming techniques the problem
can be solved in O(n2) time. Although this solution increases
exponentially, it is much better than O(n!).

B. Implementation

In our implementation we chose the encoding where each
gene in the chromosome represents a city, and the
chromosome represents the order in which the traveling
salesman would move. We use an implementation with 25
cites and we must not forget that the salesman should visit
each city only once.

Fig. 2. A chromosome which represents one of the possible solutions

The fitness function that characterizes each chromosome,

represents the total length of the route from the first to the last

1Ivana Stojanovska is with the Faculty of Information and
Communication Technologies, Vojvodina bb, 1000 Skopje,
Macedonia, E-mail: ivana.stojanovska@fon.edu.mk

2Agni Dika is with the Faculty of Contemporary Sciences and
Technologies, Ilindenska bb, 1200 Tetovo, Macedonia, E-mail:
a.dika@seeu.edu.mk

3Blerta Prevalla is with the Faculty of Information and
Communication Technologies, Vojvodina bb, 1000 Skopje,
Macedonia, E-mail: blerta.prevalla@fon.edu.mk

701

gene (city) moving according to the order of the genes in the
chromosome. If the cities are represented with x and y
coordinates in 2D coordinate system, then we calculate the
distance between them according the Eq.1:

 () ()221
2

21 yyxxr −+−= (1)

The fitness value of each chromosome is the sum of all
distances between the genes and the goal of this GA is to
minimize this function.

When starting the application it is necessary to initialize a
starting population with a given number of chromosomes (in
our application this number is 150). Once created, this
population should provide a method for crossing into the next
generation where these chromosomes are replaced with new
chromosomes by applying the GA operators. The best solution
from the current generation is saved and added to the new
generation, if it does not already exist there. All this is
repeated a number of times, which equals the number of
generations in our application. The latest generation of
chromosomes should provide the best solutions.

C. Graphical Representation

Data obtained from the program that implements the GA
are visually presented in the form of a graph from which we
can see the progress of the GA’s fitness value minimization
over the generations. Also shown is the data for the smallest
fitness value, generation of its occurrence and the solution
itself (the chromosome with the smallest fitness value). This
application is developed in Gambas under Linux Ubuntu 7.04
and its appearance is shown in Fig.3.

Fig. 3. Application for fitness value visualization over the

generations

Initially, for the program execution we take population of
150 chromosomes, each composed of 25 genes (as the number
of cities). For algorithm execution we use 300 generations to
obtain the results shown in Fig. 3. From the figure we can see
that the population is advancing toward a population with
slightly better features. The gray cloud represents all the
solutions in a generation, and in each of these generations the
best solution is shown with a red line. As it can be seen in the

figure, the best fitness value occurs in generation 114, with
the best fitness value of 354.63 and the exact solution is: 9, 1,
2, 6, 8, 5, 3, 4, 7, 11, 10, 12, 14, 16, 21, 25, 22, 23, 24, 20, 15,
13, 17, 18, 19.

Within this visualization we made an analysis on the impact
of the number of chromosomes on the fitness value and the
time required to find the optimal solution. Moreover, we got
the results shown in Table I.

TABLE I
VARIABLE NUMBER OF CHROMOSOMES

No.of chromosomes No.of generations Fitness value Time (sec)
10 300 618,120 0,661
25 300 363,695 1,263
50 300 362,085 1,886
100 300 356,515 4,545
150 300 354,634 6,57

Fig.4 (a), which illustrates the behavior of the fitness value

when the number of chromosomes changes, shows that when
the number of chromosomes is very small (10) the fitness
value is significantly higher (618.120) according to the rest 4
examined cases (number of chromosomes = 25, 50, 100, 150)
where it slightly improves. The graph in (b) illustrates that by
increasing the number of chromosomes we get almost linear
increase in time required for finding the optimal solution (the
smallest distance between cities). The time increases slightly
from 0.661, 1.263, 1.886, 4.545 to 6.57 sec, as the number of
chromosomes gets bigger and bigger.

618,12; 10
363,695; 25

362,085; 50

356,515; 100

354,634; 150

0

20

40

60

80

100

120

140

160

10 110 210 310 410 510 610 710

N
um

be
r o

f c
hr
om

os
om

es

Fitness value

(a)

0,6615; 10
1,263; 25

1,886; 50

4,545; 100

6,57; 150

0

20

40

60

80

100

120

140

160

0 1 2 3 4 5 6 7

N
um

be
r o

f c
hr
om

os
om

es

Time (sec)

(b)

Fig. 4. Diagram of the influence of the number of chromosomes on
the fitness value and the time

702

From the above analysis we can establish that when the
number of chromosomes per generation is very small, it
significantly affects the fitness value of the best solution
found, but in further cases, there is almost no change in the
fitness value of the best solution.

III. SOLVING THE 2D PACKING PROBLEM

The packing problem is actually a way of finding the
optimal solution how to collect a given number of boxes
(packages) in a large enclosed space. The problem is very
easy to set and define, but it is quite difficult to solve. In
mathematical terms speaking, as the traveling salesman
problem, this problem is NP-hard, which means that when
given a set of boxes and a space, it is very difficult to answer
questions such as: Which is the best way to pack up the boxes,
which would be the optimal solution and how good it would
be. [19]

A. Problem Complexity

The packing problem is quite complex. When the number
of packages is small the problem is relatively simple, but the
complexity of the problem grows exponentially with the
increase in the number of packages. For example, the number
of possible combinations of 20 packages that can be oriented
in 2 directions is:

2420 102,551082!20)21)...(219()220(×=⋅=⋅⋅⋅⋅
 First we have a choice of 20 packages that can be placed in

2 directions in the space, then we have 19 other packages to
choose from, which can also be placed in 2 directions, etc.

 If you perform a "brute force" test on this small problem of
packing with 20 packages in 2D space, it will require a
computer capable of checking millions of combinations of
packings in a second, and still will need more than 10 years to
complete the process. However, because GA use evolution to
improve the solution, it relatively quickly starts to improve
and becomes significantly better for a short time (several
minutes), even when performing on relatively weak computer.

B. Implementation

In our implementation we selected the encoding where each
gene in the chromosome is a package (number of packages
equals 20), together with its orientation, and the chromosome
represents the order in which they should be packed in the
enclosed space (as shown in Fig. 5). The second field of each
gene in the chromosome indicates whether the corresponding
package should be rotated or not. If this field is set to true then
the corresponding package is rotated from its initial position,
and otherwise (false) it remains in the same orientation.

Fig.5. A chromosome which represents one of the possible solutions

The cost of each chromosome is calculated as the space

wasted in the enclosed space, after all the packages are packed
according to Eq.2:

 cb
at
⋅

−= 1cos
 (2)

where b is the highest point on the top package in the

enclosed space, c is the width of the space, and a is the total
area of the packages. So the optimal solution would have a
cost of 0, if the area of the space is equal to the area of the
boxes (packages).

At the start of the application we initialize a starting
population with randomly generated chromosomes. As input,
the application receives a .txt file that contains information
about the height and the width of the packages. [19] Once
created, this population provides a method for crossing into
the next generation where these chromosomes are replaced
with new chromosomes by applying the GA operators. All
this is repeated a number of times and the latest generation of
chromosomes should provide the best solutions.

C. Graphical Representation

As with the program for travelling salesman, data obtained
from the program is visually represented in graph from which
you can see the progress of the GA. Initially, for the execution
of the program we take a population of 100 chromosomes,
each composed of 20 genes (as the number of packages).
During the execution it can be seen that the population
gradually advances towards a population with better features.
For algorithm execution we use 50000 generations to obtain
the results shown in Fig.6. During the execution it can be seen
that the population gradually advances towards a population
with better features. It may be noted that after 50000
generations we obtain a fitness value of ≈ 8.9%, which is
found in the 9069th generation and the exact solution is: 16, 0,
4, 12, 14, 15, 9, 1, 8, 17, 3, 13, 6, 7, 11, 5, 2, 10.

Fig. 6. Application for fitness value visualization over the

generations

Fig.7 is made based on analysis conducted on the impact of
the number of chromosomes to the fitness value and the time
required to find the optimal solution. Within this analysis were
obtained the results shown in Table II.

703

TABLE II
VARIABLE NUMBER OF CHROMOSOMES

No. of chromosomes No. of generations Fitness value Time (sec)
10 50000 0,11884 74.069
25 50000 0,09978 145.598
50 50000 0,09489 253.611
100 50000 0,09489 475.014
150 50000 0,08995 747.399

Fig.7 illustrates the dependence of the fitness value and the

time of the change in the number of chromosomes. At the
graph in (a) it can be seen that when the number of
chromosomes is very small (10) the fitness value is
significantly higher (0.11884) in comparison to the rest 4
cases examined (25, 50, 100, 150) where it slightly improves
as the number of chromosomes increases. The graphs in (b)
shows that we have almost linear increase in time required for
finding the optimal solution (packing with the smallest waist
space). The time gradually increases from 74.069, 145.598,
253.611, 475.014,to 747.399 sec.

11,884; 109,978; 25

9,489; 50

9,489; 100

8,995; 150

0

20

40

60

80

100

120

140

160

8 9 10 11 12

N
um

be
r o

f c
hr
om

os
om

es

Fitness value

(a)

74,069; 10
145,598; 25

253,611; 50

475,014; 100

747,399; 150

0

20

40

60

80

100

120

140

160

50 150 250 350 450 550 650 750

N
um

be
r o

f c
hr
om

os
om

es

Time (sec)

(b)

Fig. 7. Diagram of the influence of the number of chromosomes on
the fitness value and the time

It may be concluded that increasing the number of

chromosomes significantly affects the fitness value of the best
solution found, meaning that as many generations we have as
more likely that we will find a solution with minimal waist
space on packing.

IV. CONCLUSION

With regard to what GA do best, which is an iterative
improvement of the result, the conclusion has to be that the
problems based on search, as the problem of packing and the
traveling salesman problem, there are few other tools that are
able to compete with the GA. One very interesting question in
the analysis of this class of problems is whether it is worth
spending many hours on expensive workstation to obtain a
solution close to the optimum, or to work a few minutes on
cheap personal computer (PC) to get “good enough” results
for these applications.

REFERENCES

[1] George, F.L. (2005). Artificial Intelligence: Structures and
Strategies for ComplexProblem Solving. Harlow, England:
Addison Wesley.

[2] Mitchell, M. (1996). An introduction to Genetic Algorithms.
London, England: MIT Press.

[3] Leardi, R. (2003). Nature-inspired methods in chemometrics:
genetic algorithmsand artificial neural networks, Volume 23
(Data Handling in Science and Technology). Elsevier Science

[4] Mennon, A. (2004). Frontiers of Evolutionary Computation
(Genetic Algorithms and Evolutionary Computation). Springer-
Verlag

[5] Coppin. B. (2004). Artificial Intelligence Illuminated. Jones &
Bartlett Publishers

[6] Steele, N.C. (2005). Adaptive and Natural Computing
Algorithms: Proceedings of the International Conference in
Coimbra, Portugal, 2005. Springer-Verlag

[7] Poli, Riccardo and Langdon, William B. and McPhee, Freitag
N. (2006). A Field Guide to Genetic Programming. Lulu.com -
Page 141

[8] Hauot, R.L., and Haupt, S.E. (2004). Practical Genetic
Algorithms. Wiley-Interscience

[9] Zheng, Y., and Kiyooka, S. (1999). Genetic Algorithm
Applications.

[10] Whitley, D. A genetic Algorithm Tutorial. Computer Science
Department, Colorado State University.

[11] Holland, J.H. (1975). Adaptation in Natural and Artificial
Systems. Press, University of Michigan.

[12] Goldberg, D.E. (1989). Genetic Algorithms in Search,
Optimization and Machine Learning. Addison-Wesley.

[13] Pelikan, M., and Lobo, G.F. Parameter-less Genetic Algorithm:
A worst-case Time and Space Complexity Analysis.

[14] Grefenstette, J.J. (1989). Genetic algorithms for changing
environments.

[15] Grefenstette, J.J. (1989). How Genetic Algorithms work: A
critical look at implicit parallelism.

[16] Herrmann, W.J. A Genetic Algorithm for Minimax
Optimization Problems. Department of Mechanical Engineering
and Institute for Systems Research, University of Maryland

[17] Sengoku, H., and Yoshihara, I. (1993). A Fast TSP Solution
using Genetic Algorithm. Information Processing Society of
Japan 46th Nat'l Conv.

[18] Bryant, K. (2000). Genetic Algorithm and the Traveling
Salesman Problem.

[19] Sorensen, J.J., and Mortensen, H. The use of Genetic
Algorithms on The Bin PackingProblem.

[20] Coley, D.A. (1999). An Introduction to Genetic Algorithms for
Scientists and Engineers. World Scientific Publishing.

704

