

Performance Analysis of Sorting Algorithms Through
Time Complexity

Blerta Prevalla1, Ivana Stojanovska2 and Agni Dika3

 Abstract – Performance analysis through time complexity
means analysing the time needed for execution of a program. It
is very useful because it provides information of how to
distribute efforts and resources in order to ensure greater
efficiency and to keep developers focused on the essential goals
of the program.
In this paper will be analysed the performance of five sorting
algorithms via analytical methods and experimental ones.
Sorting algorithms are chosen to analyse because many scientist
consider sorting as one of the most crucial problems in the study
of algorithms and programs.
Sorting algorithms will be implemented in C++ and tested in 3
machines with different configurations and with different input
values to see the changes of running time depending on many
circumstances.

Keywords – Time Complexity, Sorting Algorithms,

Performance Analysis.

I. INTRODUCTION

By analysing the performance of a program we mean
analysing the amount of computer time needed to run a
program. To determine the performance of a program we use
two approaches. One is analytical and the other experimental.
During the performance analysis we use analytical methods
and for performance measurement we conduct experiments.

Performance measurement indicates what a program is
accomplishing and whether results are being achieved. It helps
programers by providing them information on how resources
and efforts should be allocated to ensure effectiveness.
Performance measurement must often be coupled with
evaluation data to increase our understanding of why results
occur and what value a program adds.

The problem of sorting is one of the most widely studied
practical problems in computer science, meaning using
computer to put files in certain order. Many computer
programs use sorting as an mediator step and that’s why there
are many sorting programs. is faced with the problem of
determining which of the many available algorithms is best
suited for his purpose.
This task is becoming less difficult than it once was for two
reasons. First, sorting is an area in which the mathematical

analysis of algorithms has been particularly successful: we
can predict the performance of many sorting methods and
compare them intelligently. Second, we have a great deal of
experience using sorting algo- rithms, and we can learn from
that experience to separate good algorithms from bad ones.

II. PERFORMANCE ANALYSIS

To analyze the performance of an algorithm we must first
identify the resourses of primary interest so that the detailed
analysis may be properly focused. We describe the process in
terms of studying the runing time since it is the resourse most
relevant here. A complete analysis of the running time of an
algorithm invloves the following steps:

• Implement the algorithm completely.
• Determine the time required for each basic operation.
• Identify unknown quantities that can be used to

describe the frequency of execution of the basic
operations.

• Develop a realistic model for the input to the
program.

• Analyze the unknown quantities, assuming the
modelled input.

A. Steps in analysing an algorithm

The first step in analysis is to carefully implement the
algorithm on a particular computer. This implementation not
only provides a concrete object to study, but also can give
useful empirical data to aid in or to check the analysis.
Presumably the implementation is designed to make efficient
use of resources, but it is a mistake to overemphasize
efficiency too early in the process.

The next step is to model the input to the program, to form
a basis for the mathematical analysis of the instruction
frequencies. The values fo the unknown frequencies are
dependent on the input to the algorithm: the input size is
normally the primary parameter used to express our results,
but the order or value of input data items also ordinarly affect
the running time, as well. For these sorting algorithms it is
normally convenient to assume that the inputs are randomly
ordered and distinct. Another possibility for sorting algorithm
is to assume that the inputs are random numbers taken from a
relatively large range.

Several different models can be used for the same
algorithm: one model might be chosen to make the analysis as
simple as possible; another model might better reflect the
actual situation in which the program is to be used.

1Blerta Prevalla is with the Faculty of Information and
Communication Technologies, Vojvodina bb, 1000 Skopje,
Macedonia, E-mail: blerta.prevalla@fon.edu.mk

2 Ivana Stojanovska is with the Faculty of Information and
Communication Technologies, Vojvodina bb, 1000 Skopje,
Macedonia, E-mail: ivana.stojanovska@fon.edu.mk

2Agni Dika is with the Faculty of Contemporary Sciences and
Technologies, Ilindenska bb, 1200 Tetovo, Macedonia, E-mail:
a dika@seeu edu mk

705

The average case results can be compared with empirical
data to verify the implementation, the model, and the analysis.
The end goal is to gain enough confidence in these that they
can be used to predict how the algorithm will perform under
whatever circumstances present themselves in particular
applications. For example, we may wish to evaluate the
possible impact of a new machine architecture on the
performance of an important algorithm. [1]

Often it is possible to do so through analysis, perhaps
before the new architecture comes into existence. Another
important example is when an algorithm itself has a
paramenter that can be adjusted: analysis can show what value
is best.

III. TIME COMPLEXITY OF SORTING ALGORITHMS

A. Time Complexity

The time complexity of a program is the amount of
computer time it needs to run to completion. [2]
We are mainly interested in that how long does the sorting
programs run. It possibly takes a very long time on large
inputs until the program has completed its work and gives a
sign of life again. Sometimes it makes sense to be able to
estimate the running time before starting a program. Nobody
wants to wait for a sorted phone book for years! Obviously,
the running time depends on the number n of the strings to be
sorted.

We are interested in the time complexity of a program
because some computer systems require the user to provide an
upper limit on the amount of time the program will run. Once
this upper limit is reached the program is aborted. An easy
way out is to simply specify a time limit of a few thousand
years. However, this solution could result in serious fiscal
problems if the program runs into an infinite loop caused by
some discrepancy in the data and you acgtually get billed for
the computer time used. We would like to provide a time limit
that is just slightly above the expected run time. Also, the
program we are developing might need to provide a
satisfactory real-time response. For example, all interactive
programs must provide such a response.

B. Conducted experiments for sorting algorithms

During the experimental study we:
• Write a program to implement the current algorithm.
• Run the program for different input values.
• Get exact measurements from the actual execution

time.
• Compare results.

The analysis of the average-case performance depends on
the input being randomly ordered. This assumption is not
likely to be strictly valid in many practical situations. In
general, this reflects one of the mos serious challenges in the
analysis of algorithms: the need to properly formulate models
of inputs that might appear in practice. Fortunately there is
often a way to circumvent this difficulty: “randomize” the
inputs before using the algorithm. This simply amounts to

randomly permuting the input file before sort. If this is done,
then probabilistic statements about performance such as those
made above are completely valid and will accurately predict
performance in practise, no matter what the input.

Limitations of experiments:

• It is necessary to implement the algorithm, which
may be difficult

• Results may not be indicative of the running time on
other inputs not included in the experiment.

• In order to compare two algorithms, the same
hardware and software environments must be used

In this paper will be shown the experiments done with most
famous programs for sorting: Merge Sort, Insertion Sort,
Selection Sort, Quick Sort and Bubble Sort.
We will see the following case:

 When we have as input random 10000, 15000, 25000,
30000, 45000, 50000, 65000, 75000, 90000, 100000
numbers. With these entries we will see the running time
of algorithms when we execute them in machines with
different performances like:

• Computers with normal performance (Toshiba

Satellite with processor: Intel Core 2 Duo, 1:50 GHz,
500 MHz and 1GB of RAM memory)

• Faster Computer (T555 Dell Studio, the processor:
Intel Core 2 Duo P7450 1033 MHz, 2.13 GHz, 1033
MHz and 4GB RAM memory)

• Slower one (Dell Latitude D800, Intel (R) Pentium
(R) M processor 1.70 GHz, 209 MHz and 512 RAM
memory).

TABLE I
RUNNING TIME OF MERGE SORT ON THREE

DIFFERENT MACHINES

 N
Dell
studio
1555

Toshiba
Satellite
A200

Dell
Latitude
D800

10 000 0.3750 0.6050 1.7520
15 000 0.5620 0.7810 2.6340
25 000 0.9220 1.2930 4.3860
30 000 1.0940 1.6250 5.2480
45 000 1.6560 2.6310 7.9210
50 000 1.8590 2.7630 8.7430
65 000 2.3600 3.6440 11.3460
75 000 2.7820 3.8930 13.1190
90 000 3.2810 4.6780 15.7330
100 000 3.6720 5.1820 17.5350

706

Fig. 1. The comparison of running time for Merge Sort

TABLE II
RUNNING TIME OF INSERTION SORT ON THREE

DIFFERENT MACHINES

Fig. 2. The comparison of running time for Insertion Sort

TABLE III
RUNNING TIME OF QUICK SORT ON THREE

DIFFERENT MACHINES

Fig. 3. The comparison of running time for Quick Sort

TABLE IV
RUNNING TIME OF SELECTION SORT ON THREE

DIFFERENT MACHINES

N
Dell

studio
1555

Toshiba
Satellite
A 200

Dell
Latitude

D800
10 000 0 0.014 0.030
15 000 0 0.019 0.120
25 000 0.016 0.029 0.120
30 000 0.015 0.039 0.160
45 000 0.032 0.054 0.251
50 000 0.031 0.062 0.320
65 000 0.047 0.080 0.381
75 000 0.047 0.091 0.421
90 000 0.046 0.113 0.541
100 000 0.047 0.128 0.671

N
Dell

studio
1555

Toshiba
Satellite
A 200

Dell
Latitude

D800
10 000 0.1410 0.2440 0.5110
15 000 0.3280 0.4610 1.1810
25 000 0.9060 1.2810 3.8560
30 000 1.3130 1.8420 5.0770
45 000 2.9370 4.6250 10.8760
50 000 3.6560 5.1280 13.4690
65 000 6.0940 8.6220 24.1850
75 000 8.2810 12.5440 30.7340
90 000 11.7500 17.5940 43.8930
100 000 14.6250 20.4590 55.1300

N
Dell

studio
1555

Toshiba
Satellite
A 200

Dell
Latitude

D800
10 000 0.5320 0.8470 2.0720
15 000 1.1720 1.6680 4.6160
25 000 3.2190 4.7890 12.6180
30 000 4.6410 6.6740 18.0960
45 000 10.5150 16.6840 39.5670
50 000 12.5940 18.2250 48.1900
65 000 20.3590 28.8850 78.3920
75 000 26.4380 36.6340 101.5860
90 000 39.8900 50.7140 140.2720
100 000 45.2340 62.0270 168.1320

707

Fig. 4. The comparison of running time for Selection Sort

TABLE V
RUNNING TIME OF BUBBLE SORT ON THREE

DIFFERENT MACHINES

Fig. 5. The comparison of running time for Bubble Sort

From the results presented in the tables and the graphs
above, we can see that the performance and the running time
of a program depends directly from the machine we are
running it.

If we see the Merge Sort program for sorting 100000
random numbers we see that on the faster computer it took
3.672 sekonds to sort them, and in the slower computer it took
17.535 almost 14 seconds more. The faster computer for
sorting 100000 elements with Insertion sort program needs
14.625 seconds and the slower computer needs 55.13 seconds
to sort those numbers.

We can see that the difference here is bigger than in the
Merge Sort, its almost 41 seconds. In contrary, the difference
in running time of sorting 100000 numbers with Quick Sort is
much smaller, it takes only 0.047 seconds for sorting the
elements with the computer with better performances and
0.671 seconds for the slower computer, 0.624 seconds more.
Bubble Sort and Selection Sort in principal are programs that
need more time to do sorting, and they are not so propriate to
use because they need much more time. Selection Sort
running on the faster computer needs 45.234 seconds to sort
100000 numbers and almost 123 seconds more for sorting
them with the slower computer.
 Even though Bubble Sort its famous for sorting because it is
easier to program it, still it takes more time to sort than any
other sorting algorithms. It takes 53.875 to sort 100000
elements on the computer with high performances and
216.692 seconds for sorting with the slower computer.
We can conclude that the slower a program is, the bigger is
the difference when we execute it on different machines.

IV. CONCLUSION

A full performance analysis like that above requires a fair
amount of effort that should be reserved only for our most
important algorithms. Fortunately, there are many fundametal
methods that do share the basic ingredients that make analysis
worthwhile:

• Realistic input models can be specified.
• Mathematical descriptions of performance can be

derived.
• Concise, accurate solutions can be developed.
• Results can be used to compare variants and compare

with other algorithms, and help adjust values of
algorithms parameters.

We conclude performance analysis is very important because
we can predict the time needed by a program to solve a
problem and also we’ll know how to distribute efforts and
resources in order to ensure greater efficiency.
These are the areas involving the most significant intellectual
challenge, and deserve the attention that they get.

REFERENCES

[1] Sedgewick, R., Flajolet, P. An Introduction to the Analysis of
Algorithms English Reprint Edition (2006) Pearson Education
Asia Limited and China Machine Press

[2] Sahni, S. (2002)Structures, Algorithms, and Applications in
C++, University of FloridaData McGraw-Hill

[3] Cormen, T.H., & Leiserson, C.E., & Rivest, R., & Stein,
C.,(2001) Introduction to Algorithms, Second Edition. MIT
Press and McGraw-Hill

[4] Flamig, B. Practical algorithms in C++, John Ëiley & Sons
Inc., Canada, 1995

[5] Knuth,D. The art of Computer Programming, Volume 3:
Searching and Sorting (2nd ed.), Addison-Wesley, 1998.
Longman Publishing Co., Inc., RedWood City, CA, 1998

[6] Mehta, D., Sahni, S. Handbook of Data Structures and
Applications, (2005) Chapman & Hall / CRC Press Company

[7] Preiss, R.B, Data Structures and Algorithms With Object-
Oriented Design Patterns in C++, (1997) Waterloo, Canada

 N
Dell

studio
1555

Toshiba
Satellite
A 200

Dell
Latitude

D800
10 000 0.5310 0.8410 2.1630
15 000 1.2040 1.6780 4.8170
25 000 3.3430 4.8870 13.4490
30 000 4.8280 7.7300 19.2380
45 000 10.9850 16.0330 43.3820
50 000 13.3440 19.8430 53.5470
65 000 22.7030 32.6130 90.2900
75 000 30.1560 50.1970 126.4020
90 000 43.4690 67.4900 173.6290

100 000 53.8750 85.1890 216.6920

708

