

Graph-Based Analytical Approach to Testing
Programs

Mitko M. Mitev and Pavlina Vladimirova2

Abstract: In the paper is presented an approach based on
theoretical properties of graphs for structural interpretation of
programs and opportunities are provided for planning and
structural testing programs. The approach includes a number of
developed tools, providing specialized programming
environment for testing software modules.

Keywords: graph theory, generators of input streams, roads
and contours, programming controls

I. INTRODUCTION

The process of testing is one of the milestones in software
technologies for industrial production of programs. It is
characterized by the following major parameters:
- Type of the test system: ordinary software systems,

systems with distributed databases, network systems,
real-time systems, Internet applications etc. The
technology and used methods of testing directly
dependent on the type of tested system.

- Object of test: from separate programming procedure,
through testing the functionality of the developed classes
and ends with a series of tests of the software system.

- Goals of tests: detection and localization of errors at
different stages of used software technology, examining
the various operating parameters, determined in the
technical assignment, such as productivity, response
time, a priority system, behavior in extreme conditions,
data protection and opportunities for recovery etc.
- Used methods: different types of internal and external
tests, real-time tests etc.
- Tools: input stream generators, programs for simulating
phenomena and processes, fictitious modules etc.
- Compatibility with the design process: preliminary -
based on preliminary project, accompaniment software
system development and final – after the final
development of separate parts or the whole system.

The proposed graph-based analitical approach for testing
refers primarily to local executed program modules for

detection and correction of errors at the design stage. It is in
the class of internal, structural tests, called "white box"
method.

II. FORMALIZATION OF THE PROBLEM FOR TEST

For internal test it is necessary to represent the
programming module as a structure [3]. Therefore, in every
program module the structure determined operators have to be
found. Without violation the algorithm of the program, in
accordance with the semantics of the operators, they are
transformed into so-called IF structures. This allows the
control structure of the program to be presented as a finite
oriented graph G (X, U, P), where:
X is the set of vertices. Each vertice represents IF operator of
the modified structure.
U – Set of edges of the graph. Each edge represents a linear
section of the program. The edge must be oriented and must
connect two vertices.
P – Incidentor, which is three-place predicate and introduces
relationship between the vertices and arcs of the graph. The
predicate takes value true, if two specific vertices and edge
are incident each other. Otherwise, the predicate takes value
false.

In this transformation there are two special cases:
- Sequence of two IF operator with linear section between

them (the example on Figure 1 is in Visual Basic. Net). By
analogy, the same is true for other programming languages.

 a b c

Fig.1. Transformation of the IF structure with a conecting
linear section

a) code of the program
b) performance with impaired connectivity
c) conversion with duplication of the common linear section

- Cycle with post condition (Fig. 2)

1Mitko M. Mitev, Technical University - Varna, Department of
Computer Sciences and Engineering, Studentska 1, 9010 Varna,
Bulgaria, E-mail: mitevmm@abv.bg

2Pavlina St. Vladimirova, Technical University - Varna,
Department of Computer Sciences and Engineering, Studentska 1,
9010 Varna, Bulgaria, E-mail: pav_varna@yahoo.com

If ------
Then
Else
End If
If ------

719

 a b
Fig.2. Transformation of cycle with post condition
a) the presentation of impaired connections
b) conversion with duplication of cyclic section

Such presented program can be tested with known

methods[1,2].

 Let's is given the set of data },,1{ },{ KkdD k ∈=
which is usually classified as input, output or intermediate.
On the other hand input data can be divided into data for
calculations, control and diagnosis. By analogy, output data
are numerical results, diagnostic or data used for control
(structuring) of the next software modules.

For the purposes of testing data can be classified as:

- data involved in the composition of the operands, but does
not change its value,
- data involved in a decision making,
- data, which during the execution change their value,
- double or triple mixed data from the previous three groups.

 On this basis, for each data in the structure of the program
may be specified path (paths) of its movement. Each path
starts from the place in the structure of the program, where
the data appears for the first time and ends with its last use.
The path of the input data, represented by its values, starts
from the moment of calling the module for execution. The
path may end in the logical end of the module if they
appeared as results included in the interface.

The path of each data can be described as a sequence of

vertices and edges. For example, let },1{},{ NixX j ∈= ,

where XN = and Ddk ∈ , with initial vertex i and vertex

m (m> i), one of the possible paths Ssk
mi ∈, of testing is

described as

mmnllllliii xuuxux ,1,, ,, +++ ΚΚΚ (1)

In particular, it is possible i = 1 and m = N. This is a case,
when data is both input and output. Otherwise, it is an input
and participates in the formation of intermediate results or it
is output, but caused of the execution of the program module.
Let's are given two vertices Xxx ji ∈ and i ≠ j and

),,(, jjii xuxP is true, i.e. Uu ji ∈, . Therefore, can be
determined following, generally crossed subsets of data, i.e.
the conditions in the two vertices is determined by data
included in them

DdDd j
k

i
k ⊂⊂ }{ ;}{ (2)

Similarly,

 Dd ji
k ⊂}{ , (3)

are data included in the calculation of the linear section of the
program.

Paths of two data are directly independent unless they
include common elements such as vertices and edges.
Therefore, these paths can be differentiated as two
independent tests. Otherwise, they are directly dependent,
because they have common data, which in accordance with
the algorithm can determine changes in values or paths of
execution.

It is recommended directly dependent paths to be tested
independently of each other in an exchange sequence.
Implementation of the second test will depend on the results
of the first test and contrariwise. This sequence does not
exhaust all possible cases of directly dependent paths, but
decided the main ones.

Two routes are indirectly dependent, if there is a third path,
which is directly dependent on the previous two paths,
because its implementation could lead to termination of one
(or both) path or to include other paths. The concept of
indirect dependence can be extended to two sequences of
directly dependent paths, but obligatory finish with a path,
which is directly dependent on paths in the last two
sequences.

Testing at this situation can be done in reverse order,
starting with the path connecting the two sequences and
alternatively the rest directly dependent paths of both
sequences are changed.

This approach is convenient for a description of a linear
section of the programming module. In the case of cycles,
calling the other modules for execution, implementation of
early or late binding or creation instances of classes, the
approach is not applicable due to its low efficiency.

 III. METHODOLOGY FOR TESTING

Testing of the program module includes the following
steps:
1. Preparation of the module.

- Determination of the programming module for testing and
placing it in the program environment.
- Analysis of program text and identification control
statement.
- Select the linear sections (if any), which are out of a
control statement and its subsequent inclusion in the linear
sections of the block structure of the previous control
statement.
- Finding of cycles with post-condition (if any) and
duplication of the cycle body, according to method, suitable
to the occasion.

720

- According to the text sequence, numbering of all real and
additionally included IF operators, resulting from the
transformation of the control statements.
 - Establishment of the related linear sections in the obtained
IF structure and respectively their dual indexing.
- Tabular or list representing of the structure as a finite
oriented graph G (X, U, P) with a completely determined
sets and values of the three-place predicate.
 - For each vertex or edge is determined the data, included
in their composition, whish are a subset of all data.
- An unique link is determined between the vertices (2),
edges (3) and subsets of data.

2. Formation of paths and marking of test sequences.
 - For each of the specified data is determined the location
of its first appearance and respectively the final point of its
existence.
 - According to (1) are determined the paths for the
existence of the data in the program. For this purpose in the
graph G is looked for routes from the specified initial and
final vertex.
- The routes are tested in pairs in order to establish their
direct independence. Firstly these routes are numbered in
increasing sequence (counter and identifier of the test path
in the program are formed).
 - If there are any direct dependence paths, tests are
numbered with the next counter values by alternative
change of execution of the two roads.
 - If there are proved indirectly dependence on the third or
other paths then have to analyze the sequence of roads with
directly dependence until be found a direct dependent path.
 - If such path exists, then the test counter begins with it and
alternatively increases in both branches till reach the first
two routes.
 - Otherwise directly dependent paths are marked by
incrementing counter.

3. Preparation of data and testing.
Tests are carried out according to their identification

number. For that purpose have to prepare the necessary data:
- The input data are determined, also their range of
variation, accuracy of presentation, etc.
 - The data are classified into specified four groups.
 - For each data are defined two classes: correct and
incorrect values.
 - All data involved in testing path obtained value of the
class of correct values and next value of the incorrect class.
- Tests are carried out in a test environment with consistent
monitoring of the executed path and temporary and final
values.

4. Analysis of the results.

The analysis of the results is performed by well known
methods of direct comparison or mathematical statistics when
a comparison is impossible.

III. CONCLUSION

In the report is presented a way for transformation
programming text into so-called IF structure and its
subsequent interpretation as a finite oriented graph. An
analysis of the used data is introduced and their classification
is proposed, according to their actual participation in the
calculation process and the decision making, depending on
the conditions in control statements. On this basis, subsets are
defined for every linear section or control statement. As a
result, is proposed methodological sequence for determining
test routes according to their mutual dependence (or
independence).

The proposed theoretical algorithms are developed and
implemented as a software library of tools. They can be used
alone or be included in the composition of a software system
for testing.

REFERENCES

 [1] J. Zhao, “Data-Flow-Based Unit Testing of Aspect-Oriented
Programs”, Department of Computer Science and Engineering
Fukuoka Institute of Technology, Japan,2001
[2] P. Jorgensen, Software Testing. A Craftsman’s Approach,2nd
ed.-,CRC Press,2002 , 359
[3] S. M. Kauffman, “Graph Theory and Linear Algebra” , 2007,105
http://home.comcast.net/~smka2436/Graph_Theory_and_Linear_Al
gebra.pdf

721

