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Abstract – Problems of the security of the most popular 
asymmetric cryptographic algorithm RSA are considered. A new 
approach to factorization of large numbers and attack against 
RSA is proposed. A recommendation about secure generation of 
public and secret keys of RSA is formulated. 
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I. INTRODUCTION 

RSA (Rivest-Shamir-Adleman) is the most often used 
asymmetric cryptographic algorithm in security schemes of 
computing and communication systems. It is one of the few 
known cryptographic algorithms of this class that are 
distinguished for their universal application – in ciphering of 
messages, digital signatures and exchange of session secret 
keys in hybrid ciphering schemes. It has been perceived by 
ISO, ITU-T, ANSI, banking and financial spheres, military 
units, etc. It is used in crypto-systems to protect e-mail, in 
electronic trade, credit card systems, Internet-browsers, etc. 
Actually RSA is de facto world–wide standard for asymmetric 
cryptography, well known also as cryptography with public 
keys. 

The description of RSA is very simple [1, 3, 4, etc.]. 
Initially every user chooses two sufficiently large prime 
numbers a and b, whereupon is calculated 

 
ban .=   and              (1) 

 
( ) ( )( )1.1 −−= banΦ              (2) 
 
The public key Kp and the secret key Кs of the pair 

“public/secret” keys of that user are determined from the 
correlations: 

 
( )( ) 1,НОД =nΦK p  and            (3) 

 
( ) ( ) 1mod. =nΦKK ps ,             (4) 
 

where НОД is the greatest common divisor of the numbers 
in square brackets [the number Кp must be accidentally 

chosen and mutually simple to the number Φ(n)]. 
Further on in the procedures of ciphering and deciphering 

respectively the pairs of numbers (Kp,n) and (Ks,n) are used, 
as the first pair is made public attribute, Ks is kept in secret, 
and the initial numbers a and b are destroyed. 

Any accidental source can address a protected message to 
that user, ciphering the open text М of the message with the 
public key KP and send the resultant ciphered text Е. Only that 
user is able to restore М after deciphering Е with his own 
secret key KS. 

Any eventual offender, received somehow the ciphered text 
Е, will know KP and n. To restore the open text М however, 
this offender will have to factorize n to its unknown prime 
factors a and b (this procedure is known as factorization of n), 
whereupon to calculate Φ(n) and KS. But this factorization is 
very labour-consuming and with sufficiently large values of a 
and b becomes practically beyond the potentialities of 
contemporary level of technologies. 

It is possible that the offender makes a try to find out Φ(n) 
directly, without factorization of n, but this is not simpler than 
the factorization itself. 

The third possibility for the offender is to immediately 
calculate KS without factorization of n and determination of 
Φ(n), but with sufficiently large KS, this possibility is not 
easier than the factorization itself either. 

In essence, the above three crypto-attacks to RSA can be 
considered as attack of the brute force. In the end, however, 
the real practical attack to RSA comes to solving the problem 
with the factorization of n. 

II. AN APPROACH TO FACTORIZATION 

A number of methods to solve this problem are known (see 
[2, 3, 4, etc.]), which differ in various labour-consumption. A 
new method of factorization is presented below, which in a 
number of cases requires less steps, compared to the other 
similar methods known. The idea of this method is based on 
the popular Theorem of Euler, saying that any even number, 
greater than 2, can be represented as a sum of two prime 
numbers.  

If a successful factorization of n is made and the prime 
factors a and b are found, then further on Φ(n) will be 
calculated and after that the secret key KS from the 
correlation: 

 
( ) ( ) 1mod. =nΦKK ps .             (5) 

 
To expose the main point of the proposed method for 

factorization, we shall use the following example:  
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a=13, b=29, n=377, ⎣n0.5⎦=19. 
 
Further on we shall write down the two-row sequence of 

the numbers (1÷⎣n0.5⎦) and (⎣n0.5⎦÷37) so that the sum of the 
numbers situated one under another is equal to       
2.⎣n0.5⎦=2.19=38: 

 
1    2   3   4   5   6   7    8   9  10 11 12 13 14 15 16 17 18 19 
37 36 35 34 33 32 31 30  29 28 27 26 25 24 23 22 21 20 19. 

 
As a<b, then in the first row of the sequence above, the 

number a=13 is situated closer to 19=⎣n0.5⎦, than b=29 in the 
second row. The distance from a to ⎣n0.5⎦ in this case is  
La=⎣n0.5⎦-a=19-13=6, and from b to ⎣n0.5⎦ - Lb=b-⎣n0.5⎦=29-
19=10. If we increase ⎣n0.5⎦=19 consecutively by one and two, 
then the new similar two-row sequences of numbers will look 
like the ones below: 
 
1     2    3  . . . . .  . . . . . 11  12  13  14 . . . . . . .  . . . . . . 19  20  
39  38  37 . . . .  . . . .   . 29  28  27  26 . . . . . . .      . . . . 21  20 
 
1   2    3 . . . . . . . . . . 11  12  13  14 . . . . . . . . . . . .  19   20  21 
41 40  39 . . . . . . .  .  31  30  29  28 . . . . .  . . . . . . .  23  22  21 

 
In the second sequence the numbers a=13 and b=29 are 

already situated one under another and their sum is equal to 
42=2.21, and their product - to n=377. To obtain this 
correspondence in this case only two iterations came out to be 
enough. 

If in the general case, the necessary number of iterations for 
factorization of n is denoted by V, it is easy to prove the 
validity of the following correlation: 
 

( ) ⎣ ⎦
2

2
2
1 nbaLLV ba

−+
=−= .           (6) 

It can be seen that the prime factors a and b of the number n 
we have been after, can be determined from the correlations: 
 

⎣ ⎦ xVna −+=              (7) 
 

⎣ ⎦ xVnb ++= ,             (8) 
 
which lead to 
 

⎣ ⎦( )nVba +=+ 2 .            (9) 
 

In the example, considered above, V=2 and x=8, while 
а=19+2-8=13 and b=19+2+8=29. Essentially x is the distance 
between a and b, and the right-hand beginning of the two-row 
sequence of numbers at the last iteration, which in this case is 
the second in order. After the second iteration, the numbers а 
and b proved to be one under another and at the same distance 
from the beginning of this sequence, which in this example is 
the number (⎣n0.5⎦+V)=21. 

As a.b=n, then the second factor b can be expressed simply 
by the first factor a, i. е.  b=n/a and then: 

⎣ ⎦( )nVana +=+ 2/           (10) 
 

⎣ ⎦( ) 022 =++− nanVa .          (11) 
 
Solving the quadratic equation above, finally we get: 
 

⎣ ⎦ ⎣ ⎦( ) nnVnVa −+−+=
2

,         (12) 
 

⎣ ⎦ ⎣ ⎦( ) nnVnVb −+++=
2

         (13) 
 
These two correlations can be used for factorizing n. For 

that purpose V is given consecutive integer values, starting 
with 1. For each consecutive value of V the expression under 
the radical is calculated 

 

⎣ ⎦( ) nnV −+
2

           (14) 
 

and is checked if it is equal to the square of an integer. If it is 
not, V is given the next consecutive value and so on. The 
solution for a and b is reached at that V, for which the 
expression 
 

⎣ ⎦( ) nnV −+
2

           (15) 
 
accepts integer value, denoted in this case by x. Then from the 
expressions above for a  and b we calculate their specific 
needed values. 

If in the expression for V we replace b by α.a, i.е.  b=αa, 
then 
 

⎣ ⎦
⎥
⎦

⎥
⎢
⎣

⎢
+

−+
=

−+
= 1

2
21

2
2 2 αααα aaaaV .      (16) 

 
For approximate calculation of the necessary number of 

iterations the formula 
 

2
21* αα −+

= aV ,           (17) 

 
can be used, which for the sake of convenience can be 
presented in the form: 
 

( )αα 215.0
*

−+=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
a

V
          (18) 

 
In this formula, for the purpose of simplification of the 

expression, the requirement for separation the integer part of 
the result of the square root calculation of αa2  is removed. 
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The graph of the changes in (V*/a) depending on α is shown 
below (fig.1). 

If the prime factors a and b have the same decimal rank, i.е. 
the same number of decimal classes, then 

 
.....1000min =a            (19) 

 
.....9999max =b  and           (20) 

 
10.....999,9max ≈=α .           (21) 

 
Fig. 1. 

 
In this most unfavourable case of factorization of n, the 

number of iterations V*=2.34a=2.3410h, where h is the 
decimal rank of a  and  b. 

III. CONCLUSION 

Considering what has been said above, we can draw the 
following conclusion: the exposed method for factorization 
requires smaller number of iterations at smaller difference 
between the values of a and b. Furthermore, the method is 
applicable even when a and b are not prime numbers, but odd 
or even numbers. 

The comparative estimations made for the necessary 
number of iterations between the method presented and the 
methods for factorization, known from literature, show that in 
some cases it is with less labour consumption, and in other 
cases – not. For example, for factorization of n=22317 using 
the method proposed, only two iterations will be necessary. 
For comparison, according to the estimations given in [4] for 
the necessary number of iterations with different methods, for 
the algorithm of Dixon in this case will be needed: 
 

( ) 6loglog.log ≅nnne  iterations,          (22) 
 
And for the Quadratic Sieve Algorithm: 
 

( ) 122lnln.ln ≅nne  iterations.          (23) 
 

In conclusion we shall annotate that the method proposed 
can be considered as development of the problem for 
factorization that has more general nature. Using this method, 

a quicker crypto-attack can be accomplished to the 
cryptographic algorithm RSA, provided the numbers а and b 
have close values. 
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