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Abstract – In this paper is proposed a new algorithm for 
Adaptive Color Karhunen-Loeve Transform (ACKLT) of RGB 
components, based on pre- and post-processing, depending of the 
their power distributions. The pre-processing of the components 
is made by the histogram of the most powerful component which 
is used as reference image for the transformation of the other 
components by the histogram-matching. On the already 
transformed components is applied ACKLT. Through the 
proposed algorithm for color transformation we increase the 
power in the first component at the expense of the others hence 
we can compress more efficiently the color components. The 
results demonstrated by the experiments made with the modeling 
of the algorithm are confirming the advantages. 
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I. INTRODUCTION 

The transformation of the primary color space RGB is a 
very important part of the image processing. In general the 
color components in an RGB color system are very much 
correlated. The most important feature of the new EACT 
(Enhanced Adaptive Color Transform) [1] is the decorrelation 
of the color components. The proposed In this paper algorithm 
gives predictability of the power distribution of the color 
components in the new format. Hence the applications of the 
method are many: lossy and lossless image compression, color 
image segmentation, image recognition, and others. 

There are two types of color spaces - deterministic and 
statistical. The deterministic transforms such as YCrCb, YUV, 
YIQ, Lab, CMYK [3, 4, 7, 8] are calculated by using fixed 
coefficients – hence they require less computations in order to 
make the color transform but the disadvantages are that they 
are not adapted to the image specific that is being 
transformed. Also they are unpredictable in terms of knowing 
which transformed component is the most powerful or in other 
words which component carries most information. The 
proposed algorithm has excellent predictability in terms of 
power distribution i.e. the first component is the most 
powerful then comes the second then the third etc. Also the 
EACT is adapted to the statistical properties of every image or 
group of images that is being transformed hence the transform 

is more accurate and from that follows the better quality of the 
restored image in comparison with the deterministic 
transforms [2] or the power distribution that we obtain by 
using the ACT algorithm without the pre-processing 
techniques [3, 7]. The disadvantage is that the algorithm 
requires a large number of computations for the pre- and post- 
processing of the color components.  

The purpose of this paper is to improve the already created 
algorithm Adaptive Color Transform (ACT), by using the 
method for histogram matching as pre-processing technique 
on selected color components. The goal is to achieve better 
power distribution of the components which is with very good 
predictability, something that can be further improved.   

This paper is organized in the following manner: in part 
two we give the algorithm description, in part three are the 
experimental results in the forms of analysis, graphics and 
tables. The final forth part gives the conclusions. 

II. ALGORITHM DESCRIPTION  

The proposed algorithm designed as an improvement of the 
already created algorithm ACT [1, 2]. It is also important to 
mention that this algorithm is a complete analytical solution to 
the problem of the color KLT, presented in [2]. The algorithm 
is simplified to reduce the necessary computations of the color 
transform. 

Transforming an image into the new color format is made 
by the following steps, which are the forward part of the 
EACT. 
Step 1: Histogram analysis and selection of the base 
component.  

In order to select the base component which we will use in 
the following step as a reference image for the histogram 
matching we must perform histogram analysis of the power 
contained by all the components. For that purpose we use the 
following formulas: 
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Where are the respective color components in the 

RGB image, “i” is the current pixel index and S is the total 
number of pixels in the image. For base component we select 
the component R, G or B for which the power function has 
greatest value. For that component we don’t perform 
histogram matching, because it is used as a reference image in 
the next step. 
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Step 2: Histogram matching and output array expansion. 
Let us consider the two histograms )(khin  and )(rhout  

where the first one is the component that have to be 
transformed and the second is the histogram of the reference 
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component we selected. Respectively 1L10rl  ,...,,  
where they are the discrete levels in the two histograms. 

In accordance with the method “histogram matching” of a 
histogram in an image based on the intensity of every pixel 
with a discrete level “k” in first is applied the following non-
linear transform: 
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where L is the number of discrete levels in the image. The 
function )(kg1  is the first non-linear transform where 

Sknkhin /)()(   is the intensity histogram, )(kn  is the 

number of pixels in the image with the same value (intensity) 
“k”, and “S” is the total number of pixels in the image. This 
action is known “histogram equalization” or “histogram 
normalization”. On the function )(kg1  we must apply another 

non-linear transform in order to reshape the original 
histogram. The relation between the level “r” of the 
transformed intensity and the original level “k” is defined by 
the expression:             
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The function )r(g2  is calculated in the same manner as 

)k(g1 . 

 
Fig 1. Histogram Matching 

We must add that the two functions )k(g1  and )(kg2  must 

comply with the condition: 1rg kg0 21  )(),(  or that the 

two functions must be monotonically increasing and their 

values are always between 0 and 1 (because they are 
normalized). 

Before actually applying the method described above, we 
must add a little customization. In the general case an image 
in the format RGB is with 24 bpp (bits per pixel) size or 8 bpp 
per component, so the discrete levels in every component are 
256. The use of 256 discrete values in the histogram matching 
will generate a lot of errors in the restoration of the image. To 
avoid that, we must increase the number of discrete values in 
the transformed components. It is a good choice to have 10 
bits or 1024 different values for the components that are to be 
transformed. So, to comply with that condition, we must 
expand the histograms by linear interpolation of the elements. 
To do that we must look at the equation 10242563256  , 
hence to every two components in the original histogram we 
must add another three components. The best choice is to add 
them in between the known two.  Let us consider two 
neighbor elements in the already normalized histogram )(kg1  

or )(kg2 , let aig1 )( and e1ig1  )(  where “i” is a random 

number in the interval  1Li0   and ea   (which is a 
given because the function is monotonically increasing). So, 
let the expanded histogram be denoted as )(exp jg1  where 

1L4j0   and then let us consider a small section of the 

histogram, for example the section of elements edcba ,,,,  
where “a” and “e” are already know so the others must be 
calculated by using the equations: 
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Fig 2. Histogram Expansion 

In the end we have a function )(exp jg1  with the same shape 

as )(rg1  but with more values. The same operation must be 

applied to the base component histogram in order to have two 
arrays with the same size for the process of histogram 
matching. 

After completing the histogram matching we will have all 
the three components of the RGB image in the same shape. It 
is important to note that the base component which is selected 
as the most powerful component is not transformed by the 
method. It is passed to the EACT coder as it is. Only the other 
two components are transformed and expanded. In addition to 
that we must ensure that the reverse functions can be applied – 
so we must write into the header the original histograms of the 
two transformed components in order to be able to construct 
the inverse functions [3, 7]. 

Step 3: Calculation of the primary color vectors 
t

ssss BGRC ],,[


 for each pixel s = 1,2,..,S from the already 
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pre-processed image, where NMS  pixels and M and N 
are respectively the height and the width of the image [1, 2]. 

Step 4: Calculation of the image covariance matrix 
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to mention that the matrix is symmetric across the main 
diagonal  hence the eigenvalues are always real numbers [1, 
2]. 

Step 5: Calculating the coefficients of the characteristic 
equation of the covariance matrix  CK  [1, 2]. 

Step 6: Calculation of the eigenvalues 321 ,,    of the 

characteristic equation defined in the previous step. Given that 
the matrix  CK  is a symmetric matrix the eigenvalues can be 

defined by the “Cardano” relations or the so called 
trigonometric solution, where we have the condition [1, 2]:  

   0321    

From where we have the predictability of the power 
distribution. The first component has more power or carries 
more information than the second etc. 

Step 7: Calculation of the eigenvectors 
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covariance matrix  CK  and from them forming the 

transformation matrix    [1]: 
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Step 8:  Performing the color transform 

  )( 

 ss CL using the already generated transformation 

matrix    to obtain the transformed color vectors 

 s2s L,  t
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 where s is the current pixel in the image 

[1, 2].  
The restoration to the primary format RGB is made by two 

steps. The first one is by applying the inverse ACT the 
method of which is described in [2]. The second step is 
applying inverse histogram matching in order to restore the 
original color values. For this we use the already stored in the 
file header original histograms of the transformed components 
and we use them as reference images in the same way that we 
used the base component in the forward transformation part of 
the algorithm. It is important to mention that we don’t actually 
need to store the whole two components. We need to store at 
least one of them and the other can be represented as a 
difference array. Also, we can apply any form of lossless 
compression on them in order to reduce their size.  

The improvement of the algorithm presented in this paper 
shows great results in terms of power distribution in the color 
components, quality of the restored images and excellent 
predictability of the power distribution in the transformed 
matrices. More detailed results are shown in the next section 
which is the experimental results. 

III. EXPERIMENTAL RESULTS 

As experimental dataset was used three different sets of 
images of different size – the “Kodak” image set plus the 
image “Lena” and “Barbara” 26 images in total, of size 
512×768 or 768×512, Lena - 512×512 and Barbara - 640×512 
pixels. The “cgraph” image set which comprises ten computer 
generated images of size 1024×768. The “natural” image set 
which is comprises 10 images of HD size, 1920×1024 pixels. 
All the images are in the format .bmp (primary format for the 
RGB color system) with 24 bits describing each pixel (bpp).  

For quality measurement was used the Peak Signal to Noise 
Ratio (PSNR) - equation below. The PSNR gives the 
objective representation of the restored image quality [3].  
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Where the MSE is the Mean Square Error of one component 

of the RGB image. The value  is the original value from 

the original image and  is the restored value in the point 

(i, j) of the image for the given component R, G or B. 
Therefore there are three different MSEs which represent the 
error in the image. So to find the total error we must add them 
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For measurement of the power distribution we use the 
following formula: 
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are respectively the width and the height of the image and 
is the respective value from the k-th matrix.  j,iL

In Fig. 3 are shown some images from the image toolboxes. 

   
a)                                                b) 

   

c)                                               d) 
Fig. 3 Images from the image toolboxes: a) cgraph1,  b) natural7, 

c) kodim15,  d) kodim23. 
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TABLE 1.  

EACT MEAN PSNR VALUES FOR ALL THE TOOLBOXES 

Toolbox EACT Mean PSNR, dB 
Kodak + Lena +Barbara 50.79 
Cgraph 51.24 
Natural 50.17 

ACT Power Distribution natural Toolbox
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Fig 4. Power Distribution “Natural Toolbox” EACT  
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ACT Power Distribution natural Toolbox with no histogram 
matching
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Fig 5. Power Distribution “Natural Toolbox” ACT without 

histogram matching 
 

YCrCb Power Distribution natural Toolbox 
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Fig 6. Power Distribution “Natural Toolbox” YCrCb 

 
From the chart in Fig. 4 we can see that power distribution 

in the transformed components strongly favors the ][ 1L  

matrix, and then comes the ][ 2L  and the ][ 3L  matrix is not 

visible in the charts. From here we can tell that the power 
distribution that we obtain from the improved algorithm 
presented in this paper is with excellent predictability in terms 
of the power distribution as we mentioned above. We can also 
make a comparison with the power distribution of the ACT 
Algorithm presented in [1, 2] and the results prove the 
effectiveness of the new algorithm, Fig 5 and the YCrCb 
power distribution mentioned above in section two, Fig 6. 
Also the power ratio between the transformed components is 
very high. We must add that the quality of the restored images 
is very good as we see from Table 1.  

IV. CONCLUSION 

In the proposed algorithm the transformation is adapted for 
each image that is being transformed therefore the transform 
matrix generated by the algorithm is adapted to the statistical 
information of the image hence the transform is more 
accurate. Also we must add that the demonstrated in the 
previous part power distribution in the matrices allows the 
algorithm to be used very effectively for image compression 
and/or processing. The results of the algorithm in terms of 
image quality and processing time can be further improved by 
finding an efficient way to decide when the histogram-
matching will be an advantage. Something that can be 
described in future papers. 
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