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Abstract – This paper considers a new method for FIR filters 

design. The method uses an  optimality norm. To achieve a 

better approximating effect, a new modulating function which 
compresses the oscillations of the cosine is proposed. A 
parameter sets the gradient of the modulating function, with 
respect to the oscillations’ compression. The approximating 
polynomial is carried out using Remez’ exchange algorithm. An 
optimal polynomial with lowest possible (four) degree, that 
approximates an ideal filter’s response with high precision is 
proposed. With the proposed method an FIR filter with 
arbitrary specifications can be designed. Design example of low 
pass FIR filter with a minimization of calculation is performed. 
The obtained filter’s response is close to the ideal low pass filter 
response. 
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I. INTRODUCTION 

The filters’ design is a mathematical problem for an 
approximation of the ideal filter’s response. This is an ideal 
function, comprising rectangular shape with two areas: pass 
band and stop band. The analytical expression of the ideal low 
pass filter response is. 
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where 
c

  is the cut-off frequency. In the FIR filter design, the 

approximation function is a cosine polynomial 
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The coefficients of the filter’s impulse response are 
determined by the coefficients of the polynomial. The 
difference between the ideal function and the approximating 
polynomial defines the error function. 
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When the approximation is optimal, the graph of the 
approximating polynomial oscillates with equal amplitude 
close to the ideal function’s graph. The amplitude of the 
oscillations determines the approximation’s error. The three 
most popular norms used in FIR design are as follows: 

-- weighted  norm. The approximation’s error is 
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--  error - weighted integral least-squares norm 
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 error - weighted Chebyshev’s norm 

  
 

    
,

max
o

E W E
 

  



 . (6) 

In the all above cases  W   is a positive weighting 

function, used in order to weight certain frequencies. When 

  1W   , the maximal error in the pass band and stop band 

is equal. In this case the approximation using L


 norm is 

equiripple. 
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Fig. 1. Approximations with 32-degree polynomials using 
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Figure 1 shows a comparison of 32-degree approximating 

polynomials using ,  and  norms. It is seen that in the 

FIR filters design a suitable trade-off between flatness and the 
transition bandwidth must be made. In all the criteria, the 
functions have the oscillations in the pass band and stop band. 
These oscillations are undesirable. The goal in the design is to 

1
L

2
L L



1Peter Stoyanov Apostolov is from the Institute for Special 
Technical Equipment - MI, Bulgaria, Sofia, 1799, POB 83; e-mail: 
p_apostolov@abv.bg. 

41 



obtain a rectangular shape of the ideal filter’s response, that is 
maximally flat pass band and stop band, and narrowest 
possible transition band. 

In  and  cases the oscillations increase near to the 

function’s transition band. This is due to the Gibbs’ 

phenomenon [1]. The filter design using  criterion is 

studied in details in many publications. A various methods for 
reduction of the Gibbs’ phenomenon have been proposed: 
with window functions, "don’t care” transition band, optimal 
change the transition band etc. 
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Methods for  FIR filters design, where the function’s 

overshot near the transition band is constrained, are presented 
in [2]. The method success is in reducing the Gibbs’ 
phenomenon. The design is known as “Constrained Least 
Square” filters. The synthesis is performed with iterative 
algorithm, having set the maximum value of the overshot. As 
a result an alignment of the oscillations’ amplitude near the 
transition band is obtained. This leads to the transition’s band 
expansion. The transition band is either not set as an input 
parameter in the synthesis, or set only at one of the 
frequencies that define it. The transition bandwidth is the 
result of the approximation, and is called “induced” transition 

band. In [3] computationally efficient method for  FIR 

filter design is proposed. 
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With approximation using  norm [4] filters with flatter 

response, but with wider transition band are obtained (Fig.1). 
1

L

The  norm is the most suitable for the filter design 

problem. The design is performed with the well known Parks-
McClellan’s method [5]. This is minimax approximation 
using the Chebyshev’s norm. With this method, the transition 
band can be accurately defined and arbitrarily narrow. 
However this increases the approximation’s error and the 
amplitude of oscillations (Fig.1). It was found that with the 
same specification (pass band ripple, stop band attenuation 
and transition band width) with Parks-McClellan’s method, an 
approximation with polynomial of lowest degree has been 

done. That means that the  filters will be implemented with 

the least number of coefficients. 
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A new polynomial approximation using L


 norm 

producing FIR filters with response close to the ideal will be 
proposed in the article. 

II. BACKGROUND 

As noted in all criteria, the approximating polynomial is a 

sum of cosines. Approximation using  norm can be done if 

the polynomial is a linear combination of Chebyshev’s 
polynomials (Fig.2) 
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The approximation is optimal, but inefficient, because the 
function’s graph compresses its oscillations on both ends of 

the definition domain, while in the transition band they are 
most sparse. Thus, a high slope of the function in the 
transition band can not be obtained. 
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Fig. 2. Approximation with linear combination of Chebyshev’s 
polynomials 

From (7) it is obvious illation’s compression is 

ow

 
 that the osc

ing to the  arccos .  function, which modulates the  cos .  

function’s argument, as is shown in figure 3. 
It is logical e if another modulating functio  

inverse slope to 

 to assum n with

 arccos . , and higher gradient of the graph is 

applied, a polynomial wit  higher oscillations’ compression in 
the transition ban reater slope will be obtained. A new 
function called “Third basis function” in [6] is proposed. 
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Fig. 3. Modulating functio  and Chebyshev’s polynomial n  arccos .
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The modulating function is , which comprises 

parameter 

 tanh .

4  . Changing the parameter sets the slope of 

the modulating function, and the oscillations’ compression, as 
is shown in figure 4. Similar to the Parks-McClellan’s 
method, the approximating polynomial with Remez’ exchange 
algorithm [7] is performed. Concerning the specific 
requirements of the algorithm, the degree of the polynomial m 
is an even number. For the purposes of the FIR filters design 
the polynomial has the form. 
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where  0, 2
s

  , and 
s

  is the sampling frequency. The 

goal in the proposed method is that the amplitude of the 
function’s overshot decreases when the parameter   

increases, without changing the width of the transition band, 
or increasing the degree of the polynomial.  

 
Fig.5. Approximation’s error   depending of the parameter   by 

fixed transition band 

In the other methods it is not so. Figure 5 shows the graph of 
polynomial with the lowest possible (four) degree for two 
values of the parameter  . The pass band ripple DP and stop 

band attenuation DS are determined by the approximation’s 
error   as follows: 

  20 lg 1DP   dB; 10 lgDS  dB. (10) 

III. DESIGN EXAMPLE 

The properties of the filters are illustrated through low pass 
FIR filter example design. 

Filter’s specification: Cut-off frequency 0.2
c

  rad/s; 

transition band width 0.005
c

   rad/s, sampling 

frequency 2
s

  rad/s; stop band attenuation dB, 

power of the polynomial 

60DS 
4m  ; weighting function 1W  . 

Parameter’s value   can be determined approximately 
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The polynomial’s coefficients are determined with the 

Remez’ algorithm: ; ; 
1

0.5a 
2

0.5628a 
3 5

0a a 

7.82e-7

; 

; and approximation’s error 
4

0.0628a     . The 

exact values of the pass band ripple and stop band attenuation 
are calculated by (10); 6.8e-6DP   dB; DS dB. 61.07 

Equation (9) is the filter’s magnitude response. It should be 
noted that the coefficients of the impulse response are not 
obtained directly from polynomial’s coefficients as by the 

other methods, as the argument of the function  cos .

2N

 

contains other, non-linear function. The impulse response can 

be determined with IFFT of the  samples of the magnitude 
response. The filter’s design is done using a method, known 

as “frequency sampling filter” [8]. It is based on FFT in  
samples, where N is an integer positive number. For the 

purposes of the design a window function with 

2N

12N   values of 
the magnitude response (9) are calculated. The signal filtration 
is performed with convolution between FFT of the input 
signal and the window function. The filter’s structure is 
shown in figure 6. It should be noted that a larger number of 
samples should be determined to realize a narrow transition 
band. In this particular case the appropriate value is 13N  . 
Therefore the window function consists of 4096 values, which 
determine the filter’s length. Figure 7 shows the filter’s 
magnitude response. 

 

 
 

Fig.6. Filter’s structure 
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IV. CONCLUSION 
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FIR filters with responses close to ideal filter’s response 
can be designed with the proposed method. A basis function 
that compresses the oscillations of the function in the 
transition band is proposed. The method gets its name from 
this compression. The compression ratio is determined by the 

parameter  . The approximation is carried out using L


 

norm that most closely approximates the transition band. The 
approximating polynomial is obtained by Remez’ algorithm, 
which has fast convergence and low computational 
complexity. In this case, the low degree of the polynomial 
(four) involves iterative solving of a system of six linear 
equations. In other methods they are much more. The method 
has very low computational cost and design complexity, 
which is an important advantage. With 4th degree polynomial 
FIR filter with arbitrary specifications in a fixed transition 
band can be designed. The approximation error   depends on 
the parameter  , and defines the pass band ripple and the 

stop band attenuation. No other polynomial of 4th or lower 
degree with better approximating properties is known till date. 
When the width of the transition band is equal to zero and 
parameter    , the polynomial’s graph coincides with the 

ideal response’s rectangular shape. Of course, this is 
impossible in reality. The theoretical design possibilities are 
limited by the computer calculation accuracy. The 
implementation of the proposed method makes sense in the 
design of filters with extreme, close to ideal response. The 
repeated reduction of the computational operations (Fig.8) is 
effective in approximations with values of   close to zero and 
a very narrow transition band. The proposed method may be a 
good alternative in several applications in the FIR filters’ 
design. 

Fig.7. Low pass FIR filter magnitude response 
 

It is obvious that the characteristic is very close to the 
rectangular shape of the ideal low pass response. The 
magnitude response is maximally flat. It is seen that large 
parts of pass band and stop band are constant: 1   and  . 
Since   is very small number (approximately 1e-6), it can be 
assumed that most of the values of the magnitude response in 
the pass band are equal to one, and in the stop band they are 
zeros. This circumstance leads to significant reduction of the 
calculation process of the filter. For the performance of the 
signal’s filtration, it is necessary to execute convolution only 
in the frequency band slightly wider than the transition band. 
Of course, it must include the values of the actual transition 
band. The rest of the pass band frequencies are transferred 
directly to output buffer (since it is not necessary to multiply 
by one), and those of the stop band are equal to zero. Figure 8 
shows the magnitude response of the same filter with 
described calculations’ minimization. Thus the filter of the 
considered example is realized with only 32 multiplications. 
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