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Abstract – In this paper we research possibilities of using game 

theoretic approaches for computing competitive prices in next 
generation networks. Possible applications and comparison of 
various game theory models, such as Cournot, Bertrand and 
Stackelberg game models are presented. We emphasize the 
advantages and importance of game theory based competitive 
pricing. 
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I. INTRODUCTION 

High speed Internet access and advances in network 
technologies provide incentives for service providers (SPs) to 
become more efficient and competitive. Many authors explore 
the possibilities of applying game theory for solving 
challenges in next generation networks (NGN) [1-4]. Game 
theory encompasses a set of mathematical tools adressing 
complex interactions among rational players, which can be 
used to explain the operation of various complex 
telecommunication systems. Among wide range of problems 
in telecommunications covered by game theory, pricing and 
competition issues in NGN environment are very important 
ones. Moreover, the aim of achieving efficient pricing policy 
can be obtained using the appropriate mechanisms of game 
theory. 

In this paper we discuss the possible applications of game 
theory models for competitive pricing in NGN. We focus our 
research on several particular models: Stackelberg model with 
price and quantity leadership, Bertrand model and Cournot 
model. We analyzed all the models for the same case of two 
competing SPs in NGN market. 

This paper is organized in the following way. After the 
brief overview of pricing issues in NGN given in Section 2, 
game theory based competitive models are discussed in 
Section 3. In Section 4 examples of possible applications of 
those models for competitive pricing NGN services are 
explained. Concluding remarks are given in Section 5. 

II. PRICING IN NEXT GENERATION NETWORKS 

Pricing   greatly   affects  the   usage of   services   and   the  
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resources consumption. Likewise, competition can be highly 
influenced by the architecture of a network and the ability of 
players to control scarce resources in access network. 

NGN should be designed to provide an open competition 
environment for SPs and to provide new possibilities for 
providers and users to exchange economic signals on fast time 
scales. A wide range of different pricing schemes is likely to 
be applied for competitive pricing in NGN [1, 4] and is 
expected that competition will force service providers to 
rapidly create and deploy different pricing concepts. 

It is required that pricing in NGN enables both off-line and 
on-line charging, open mechanisms for charging and billing 
management, various charging and billing policies (e.g. fixed 
rate charging and usage based per-session charging and 
billing). It is also expected that accounting functions support 
services with multicast functionality and to enable all possible 
types of accounting arrangements, including transfer of billing 
information between SPs and e-commerce arrangements. 

III. GAME THEORY BASED COMPETITIVE 

PRICING MODELS 

A. Basic game theory components and assumptions 

Game theory is a field of applied mathematics that 
describes and analyzes interactive decision making situations 
and consists of a set of analytical tools that predict the 
outcome of complex interactions among rational players [5, 
6]. Basic components of a game are players, the possible 
strategies of the players and consequences of the chosen 
strategies. The players are decision makers and their strategy 
choices result in a consequence or outcome. They try to 
ensure the best possible consequence according to their 
preferences. The preferences of a player can be expressed 
either with a utility function, which maps every consequence 
to a real number, or with preference relations, which define 
the ranking of the consequences. 

The most fundamental assumption in game theory is 
rationality. It is assumed that rational players try to maximize 
their payoff. If the game is not deterministic, the players 
maximize their expected payoff. It is also assumed that the 
players know the rules of the game well. 

In game theory, a solution of a game is a set of the 
possible outcomes. A game describes what strategies the 
players can take and what the consequences of the strategies 
are. The solution of a game is a description of outcomes that 
may emerge in the game if the players act rationally and 
intelligently. Generally, a solution is an outcome from which 
no player wants to deviate unilaterally. 
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In telecommunications game theory can be applied for 
solving a wide range of problems such as congesting control, 
resource allocation, routing, QoS provisioning, network 
security, sharing radio-communication spectrum and pricing 
telecommunication services. Various game models are 
proposed for pricing telecommunication networks. Some of 
the most appropriate game models for solving problems of 
pricing telecommunication services are Nash bargaining 
game, Stackelberg leader-follower game, Bertrand game and 
Cournot game. 

B. The Nash equilibrium concept 

Nash equilibrium is the well known concept for 
determining solutions in game theory. It implies that each 
player chooses the best strategy analyzing all possible 
strategies of all other players in the game. 

In two players game, the couple of strategies  1 2*, *s s  

represents a Nash equilibrium if 
1*s  is the best strategy for the 

first player when the other player uses strategy 
2*s  and if at 

the same time 
2*s  is the other player’s best strategic choice for 

1*s . Mathematically expressed, the couple of strategies 

 *, 1 2*s s  represents a Nash equilibrium under following 

conditions: 

  for all   1 1 2 1 1 2*, * , *U s s U s s  11s S  and (1) 

  for all   2 1 2 2 1 2*, * *,U s s U s s  2 2s S .          (2) 

Nash equilibrium doesn’t have to be represented by a single 
best strategy for each player in a game. It can be represented 
by a set of strategies for each player, such that none is 
interested in choosing a strategy from any other set that is 
different from the Nash equilibrium. 

Subgame perfect Nash equilibrium is defined as a solution 
such that players’ strategies form Nash equilibrium in every 
game that is a part of the original game. 

Nash equilibrium doesn’t exist in every game. An opposite 
case is a game with several Nash equilibrium points. In both 
cases the single optimal solution should be chosen. The most 
commonly used criteria for finding the optimal solution are 
Pareto efficiency and social optimality. 

The solution of the game is Pareto efficient if unilaterally 
deviating from that solution can not lead to higher payoff for 
any player in the game without reducing payoff of at least one 
of the other players in the game. The goal of applied game 
theory is to form a game with Pareto efficient outcome. 

The solution of the game should also satisfy the criterion of 
social optimality. In more complex games with a great 
number of players optimal solution from individual players’ 
point is not necessarily the optimal solution from point of 
system in which the game is implemented. The optimal 
solution from system’s standpoint is actually the socially 
optimal solution. It can be determined using appropriate 
optimization techniques. In order to match the optimal 
solution in terms of individual players with socially optimal 

solution, pricing concepts with main objectives of system’s 
revenue optimization and encouraging the efficient use of 
resources are widely used in computer and 
telecommunications networks. The solution that combines the 
goals of individual players and the system can be determined 
by means of appropriate pricing scheme. Pricing mechanism 
is considered to be incentive if it accomplishes both 
objectives. For that purpose usually dynamic or hybrid pricing 
schemes are considered. In those schemes users are charged in 
accordance to actual use of resources.  

C. Stackelberg model 

Stackelberg game is two-level optimization model in which 
at least one player is defined as the leader who chooses a 
strategy before other players defined as followers. Stackelberg 
model is an example of a dynamic or sequential game of 
perfect information. It is a game in which each player knows 
both the pay-off structures and the history of the game and can 
observe the actions of others before deciding upon his own 
optimal response [7]. 

 In Stackelberg game there is a certain order in the decision-
making process. Followers’ decisions about their strategic 
choices are based on the strategy that was previously chosen 
by leader. Stackelberg game can be played with either price 
leadership or quantity leadership. They can provide a good 
base for defining prices in NGN especially in case of network 
congestions. 

Regardless of whether the model is played with price 
leadership or quantity leadership, the problem of finding the 
optimal strategy for a leader has to be solved, considering that 
followers as rational players tend to optimize their utility 
functions with given leader’s action.  

In Stackelberg game interaction between leader and 
followers tend to be dynamic [8, 9]. The leader may choose a 
strategy with aim of maximizing his revenue assuming that 
the followers will choose their strategies to maximize their 
own utility functions i.e., best answers. The solution obtained 
in this way is called the Stackelberg equilibrium and can be 
analyzed by a backward induction method, which firstly 
considers the best answers of followers. The best responses of 
the followers in this game can be obtained as follows: with a 
given leader’s action, total users’ demand can be determined 
based on followers’ utility functions. Then these best 
responses are used to calculate the leader’s revenue and the 
leader chooses a strategy that maximizes his revenue. The 
equilibrium is achieved at the point of intersection of all the 
best responses. 

D. Bertrand model 

Bertrand model is a static or simultaneous game of 
complete information. In such a game players simultaneously 
choose their strategies and each player’s pay-off structure is 
common knowledge during the game. 

In Bertrand duopoly two players compete in terms of the 
price they charge users, rather than quantity levels. Thus, in 
Bertrand duopoly, the strategic variable is the price charged in 
the market. Players simultaneously decide their pricing 
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structures and market forces then decide about demand share 
for each player. 

In Bertrand duopoly model, stability depends on whether or 
not services or products sold by competing firms are identical. 
In case of identical services/products a Nash equilibrium 
exists only if both competing firms charge the same prices and 
make normal profits [7]. The situation where players 
(i.e.firms) make a competitive outcome without any collusion 
to increase profits above the normal, is known as Bertrand 
paradox. One way to overcome the Bertrand paradox is to 
have firms sell distinguishable services/products. In that case, 
Nash equilibrium with different equilibrium prices can be 
obtained [7, 10]. 

E. Cournot model 

Like Bertrand duopoly, Cournot duopoly is a static game, 
but one in which two players compete in terms of quantity 
levels, rather than the price they charge users. In Cournot 
model players choose their strategies independently and 
simultaneously and each player announces as his strategic 
choice the quantities of services that he intends to supply. 

Cournot duopoly describes how two players selling the 
same service/product can settle on their respective output 
levels so as to maximise their own profits. With aim of 
determining Nash equilibrium, a reaction function has to be 
defined for each player. Reaction function of a player in 
Cournot game is a curve that shows his every optimal quantity 
level for every possible quantity level of the other player. 
Prices adjust in response to the aggregate supply, so that all 
the quantity can be sold, and each player obtains a 
proportional amount of outlay. 

IV. POSSIBLE APPLICATIONS OF GAME THEORY 

BASED COMPETITIVE PRICING MODELS 

Here we consider possible applications of game theoretic 
approaches described in previous Section on determining 
competitive prices of NGN services. We give examples of 
Stackelberg, Bertrand and Cournot games: 

1. Stackelberg duopoly model with price leadership, 
2. Stackelberg duopoly model with quantity leadership, 
3. Bertrand duopoly model and 
4. Cournot duopoly model. 

Players in games are two SPs and assumptions are as 
follows: 
 set of possible prices is  1,0 , 

 quantity level in function of service price is: 
 and   iii MMx 1

 marginal cost of provided services in function of 
quantity level is:   2

iii xxc  . 

Stackelberg model can be convenient for determining 
competitive prices at the telecommunication market where 
some SPs have a competitive advantage over the others 
(because of technological, historical or legal reasons, or just 
because their entry was not possible at an earlier stage). SPs 
with a competitive advantage will act as leaders in 

Stackelberg game and therefore they will be able to choose 
their strategies before other SPs who will act as followers. 

In Stackelberg game with price leadership, a leader (or 
leaders) proposes the service price. Based on that price 
followers decide about their prices. In this paper we explain 
an example of Stackelberg game with price leadership with 
two SPs: SP1 is the leader who commits to price M1 and SP2 is 
the follower. SP2 will take the leader’s price as given, 
decreasing it by an infinitesimal amount and choosing his 
quantity level x2, to maximize M2 x2– x2

2, giving x2= M2/2. 
Nash equilibrium is obtained for M1=M2=8/15, x1=3/15 and 
x2=4/15. This result confirms the fact that in price leadership 
model a second mover has advantage over the leader. In this 
game leader obtains less profit than its follower. That is the 
reason Stackelberg game with price leadership is less 
frequently used compare to quantity leadership model. 

In Stackelberg game with quantity leadership, a leader (or 
leaders) proposes the service quantity level. After that, 
followers decide about quantity level they will provide to their 
users. Here, we use the same example as for the previously 
explained price leadership model with two SPs. Initial 
assumption is: SP1 commits to supply a quantity x1. After SP2 
observe this, he chooses to supply x2 with aim of maximizing 
x2(1–x1–x2), i.e. x2(x1) = 1/2(1–x1). Hence, SP1 should choose 
x1 to maximize x1(1 – x1 – x2(x1)), which gives x1=1/2. Thus 
Nash equilibrium in this game is: (x1, x2)=(1/2,1/4). This result 
indicates that the leader, i.e. SP1 has advantage over the 
follower, i.e. SP2, which holds in all Stackelberg games with 
quantity leadership. 

In Stackelberg pricing problem with a provider as leader 
and users as followers there are two levels of decision making 
process: tariff setting by a provider, and then selection of the 
best alternatives by users. This game can be formed with a 
large number of followers, i.e. users and it can be based on 
both price and quantity leadership. For determining the 
Stackelberg equilibrium in such a game there is no unique 
procedure. Various authors propose different solutions [3, 8, 
9, 11] based on Stackelberg model of interaction between 
leader and followers. 

The solution of Bertrand game with two SPs and different 
marginal costs: c1<c2, which are known to both providers, can 
be defined by Nash equilibrium. Nash equilibrium in Bertrand 
duopoly is represented by the prices SPs charge their users for 
using the service:  212 ,ccM   and  21 MM  (M1 and M2 

are the service prices provided by SP1 and SP2, respectively 
and ε is infinitesimally small positive value). This Nash 
equilibrium confirms the fact that if SP1 charges his users with 
price M1, such that M1> c1, SP2 has no incentive to deviate 
from M2, because any reduction in price below marginal cost 
would mean a loss for him. SP1 maximizes his profit by taking 
M1 only slightly lower than M2. Hence, SP1 will always win 
with a net benefit equal to approximately M2–c1 per unit sold. 
Since none will offer the price below the marginal cost, for 
SP2 the strategy M2=c2 dominates the strategy M2=M’2 for all 
M’2< c2, i.e. the first strategy is as good or better than the 
second, for all values of M1. Thus, by imposing the constraint 

, we conclude that 22 cM       2
2

2
22 ,, xxM 22 ,cc 1M  

is the Nash equilibrium of this Bertrand game. Following the 
same assumptions as in the previously explained Stackelberg 
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For the analysis of the tariff system and the relationship 
between competitive service providers, Stackelberg, Bertrand 
and Cournot, models can be used. In this paper we analyzed 
those game theoretic approaches for the same case of two 
competing SPs in NGN market. Bertrand model is suitable for 
solving the problems of determining service prices. Cournot 
model is convenient for modeling strategic choices of service 
providers that focus on the services quantity levels. 
Stackelberg model can be applicable to solve the problem of 
determining prices and/or service quantity level a provider 
offers to his users. 

game models, Nash equilibrium in the Bertrand game can also 
be interpreted in terms of quantity levels: (x1 , x2)=(1/4,1/4). 

Generally, in Bertrand game with more than two players 
with equal and constant marginal cost, the optimal solution 
does not dependent on the number of players and 
corresponding price for each player is equal to marginal cost. 

In Cournot model with two SPs offering the same service 
with total quantity level x = x1 + x2, where quantity level of 
SPi is xi for i =1,2, the resulting price in the market will be 

. Each provider must choose an amount of output to be 

produced, and then, as a function of both choices, receive a 
payoff (that is his net benefit). SPi’s net benefit can be written 
as: πi(x1,x2)=M(x1+x2)xi–ci(xi), where ci(xi) is his cost of 
providing the quantity xi. The Nash equilibrium in this game 
is the pair of outputs (x1*, x2*) with the property that if SPi 
chooses xi*, then there is no incentive for SPj to choose other 
than xj*, where . 

 xM

  jiji  ,2,1,
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