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Abstract – The representation of distributed passive 
electromagnetic structures by lumped element circuits is 
considered in this paper. Network models are established by a 
combination of system identification and circuit synthesis 
methods and their subsequent application to data obtained by 
TLM numerical simulation. Two different methods for synthesis 
of compact lumped element models for linear lossy reciprocal 
multiports are discussed in the paper. Accuracy and efficiency of 
developed compact models are verified on the example of a low-
pass microstrip filter. 
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I. INTRODUCTION 

As modern analog and digital electronics are operating at 
microwave and millimeter wave frequencies and at gigabit 
rates, full-wave electromagnetic (EM) tools for the design and 
modeling of distributed passive circuit structures are required 
[1]. However, a different approach to overall system analysis 
is possible, based on an extraction of an equivalent circuit 
model from a full-wave electromagnetic simulation of the 
structure under consideration. Such compact lumped element 
models can be embedded into conventional circuit simulators 
and treated by methods of network theory [2], [3]. Compared 
with field oriented simulation, the application of network 
oriented design methods yields considerable lower 
computational effort and time.  

In general, the representation of distributed circuits by 
lumped element network models requires that the transfer 
function of a distributed circuit is realized by an equivalent 
circuit with an infinite number of lumped circuit elements. 
This equivalent network should give the same response for a 
required excitation, as the considered distributed structure  
(so-called synthesis problem [4]). As this description needs to 
be valid within a certain frequency range only and within a 
certain accuracy margin, one can find an equivalent circuit 
with a limited number of circuit elements. This lumped 
element model provides a compact description of the 
distributed circuit. Such representation of distributed circuit 
sections by a lumped element models can be very useful 
especially in the case of modeling complex circuit containing 
also nonlinear and active lumped elements.   

In order to generate compact model, the combination of 
system identification (SI) of microwave structures and 
subsequent lumped element model synthesis has to be 
performed by full-wave simulation or measuring of the input 
and output signals of the device in the time or in the frequency 
domain [5-8]. To establish the network model of a distributed 
circuit a three-step procedure is performed:  

1. Determination of the transfer functions by numerical EM 
full-wave analysis or by measurement, 

2. Determination of the rational functions representing the 
transfer functions by system identification using e.g. 
vector fitting (VF) method, 

3. Synthesis of a lumped element equivalent circuit 
realizing the transfer function. 

In this paper, two different methods are discussed in order 
to perform step 3 - synthesis of compact lumped element 
models for linear lossy reciprocal multiports. The first method 
is based on Foster expansion for lossless circuit and its 
extension to account for lossy structures as suggested in [9]. 
The second method is Brune’s synthesis procedure that 
ultimately provides network synthesis by positive lumped 
elements [10-13] with minimum number of elements. 
Accuracy and efficiency of compact models, developed by 
these two methods, are verified on the example of a low-pass 
microstrip filter. The first two steps in the above mentioned 
procedure to create the network model of a distributed circuit 
are subsequently performed by the TLM (Transmission-Line 
Matrix), electromagnetically based, numerical method in the 
time-domain [14] and VF method originally introduced in 
[15-17].  

II. CIRCUIT SYNTHESIS METHODS 

In this section, two systematic synthesis procedures for the 
generation of lumped element equivalent circuit models for 
passive microwave structures are described. Initial data to 
develop a compact model for the structure under consideration 
can be generated either by numerical full wave analysis or by 
measurement. Then, for the impedance data, obtained in this 
way, an approximation by a rational function is performed. 
The rational fit is computed at discrete frequencies over the 
bandwidth of interest. This yields the following closed form 
expression: 
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A. Extended Foster Equivalent Circuit Synthesis 

The Foster realization approach starts with the 
characterization of the given impedance parameters zij by 
partial fraction expansion:  
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For example, for a two-port device, the Foster impedance 
realization can be obtained if all Z parameters are known: 
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Once the Foster expansions have been obta
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pedance parameter, the poles and residues are used to 
determine the equivalent circuit component values. For each 
column in the Foster expansion, there will be a corresponding 
sub T-network [9]. For the equivalent circuit to be realizable, 

the transformer turns ratio, )(ma , for an arbitrary pole m must 
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The equations outlined above are for lossless networks. 
Th

 

erefore, all residues kij are real and poles are approximated 
to lie along the imaginary axis. For a lossy structure, the 
Foster expansion term for an intermediate pole m  for all zij 

has to be modified as suggested in [9]: 
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where  in the linear term added to the denominator is  
d dir

. Brune’s Equivalent Circuit Synthesis  

or general lossy or 
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minimum number of elements. 

thesized. The impedance (or 
adm

)(mB
obtaine ectly from the real part of impedance calculated 
either from EM simulation or measurement. 
 
B

Equivalent lumped element circuits f
sless two-ports, such as considered in this paper, can be 

obtained from Brune’s circuit synthesis procedure [10-13]. 
Cauer or Foster representations of lossless circuits, explained 
in subsection A, can be extended to lossy circuits but negative 
elements even for passive circuits would result. Brune 
synthesis yields the realization of passive circuits with 

A positive real (PR) character is required for the 
impedance function to be syn

ittance) function is of the form: 
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For a PR function, all poles and zeros are located in the 

left half of the complex frequency plane, or on the imaginary 
axis respectively. Poles or zeros lying on the imaginary axis 
can be separated from the rational function without disturbing 
the function’s PR character. In Brune’s equivalent network 
synthesis procedure, the impedance function is analyzed and 
poles and zeros on the imaginary axis can be separated from 
the impedance (or admittance) function (7), and can be 
realized in a subcircuit in a straightforward manner. However, 
if all poles and zeros are strictly in the left half plane a special 
so called Brune’s process is applied. The global minimum of 
the real part of the function on the imaginary axis is 
determined. The value of this global minimum is subtracted 
from the function. Depending on which frequency this 
minimum value is found at, we have to extract the real part of 
the impedance function (for 0s  and s ) or, if the 
minimum occurs at a finite frequency, we have to extract real 
and imaginary part. Possible s rcuit extractions for this 
Brune’s process are shown in Fig.1. 
 

ubci

(a)                               (b)

(c)                               (d)  
Fig.1. Extracted circuits from the Brune’s process  

For a low-pass 
microstrip filter, shown in Fig.2, to demonstrate the two 
me

III. NUMERICAL ANALYSIS 

 the numerical study, we consider 

thods for synthesis of compact lumped element models for 
linear lossy reciprocal two-port devices described above. 
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Fig.2. Layout of low-pass microstrip filter 

164 



 
 

The physical dimensions of symmetrical low-pass filter in 
millimeters are: line widths w1 = 0.217054, w2 = 2.31921 and 
w3 = 0.0248336; line lengths d1 = 0.566318, d2 = 0.84057, 
d3 =1.29201 and d4 = 0.901333. The substrate height is  
h = 0.2 mm and its relative permittivity is εr =12.9. 

The full wave EM analysis results are obtained from TLM 
simulations. In order to generate the equivalent circuit, 
impedance p e to be de-
em

arameters of the full-wave analysis hav
bedded. Compact lumped element models obtained by 

Foster and Brune’s synthesis procedure are shown in Figs.3 
and 4, respectively. Before applying Brune’s method, 
symmetric two-port device from Fig.2 is first transformed into 
a connection of one-ports using Bartlett’s theorem. These one-
ports are then synthesized by Brune’s process which yields a 
minimum number of elements. 
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Fig.3. Equivalent Foster circuit 
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(a) Equivalent Brune’s circuit of Y2 
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(b) Equivalent Brune’s circuit of Y1 
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(c) Bartlett’ po network 

Figs.5-8 compare the synthesized equivalent Foster and 
Brune’s circuit scattering matrix results to the results obtained 
directly from EM simulation. 

 

s transformation of symmetric two-

Fig.4. Equivalent Brune’s circuit 
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Fig.5. Real part of S11 parameter  
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Fig.6. Imaginary part of S11 parameter  
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Fig.7. Real part of S21 parameter  
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IV. CONCLUSION 

Two methods for synthesis of compact lumped el
models for linear lossy reciprocal multiports are discussed in
the paper. Brune’s method has provided a better agreement
approximation of the EM simulation data, it is more suitab
for the lossy structures as it provides only positive lu
elements in the equivalent circuit. However, it is applicable at 
the moment to the one-port device; symmetrical two-po
devices can be transformed into one-ports by using Bartlett
theory. In the extended Foster approach, the agreement of 
approximation to the EM data was slightly reduced, and
approach could result in negative elements in the case of lossy
structures, but it can be apllied easily to multiport devices. 
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