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Abstract – This paper proposes the novel model of two-level 
scalar quantizer with extended Huffman coding that is designed 
such that to achieve as close as possible approaching of the bit 
rate to the source entropy under the given constrain that the 
SQNR value does not deviate more than 1 dB from the optimal 
SQNR Lloyd-Max's quantizer value. Unlike to the Lloyd-Max's 
quantizer, for the proposed quantizer, the asymmetry of 
representation levels is assumed to provide an unequal 
probability of representation levels for the symmetric Laplacian 
probability density function, that in turn provides the proper 
basis for the further implementation of a lossless compression 
techniques. The convergence of the proposed quantizer’s bit rate 
to the source entropy is examined in the case of two and three 
symbol blocks. 
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I. INTRODUCTION 

One of the most important steps in the process of 
converting analog to digital signal is quantization. 
Discretization of the signal amplitude is done by a quantizer. 
When developing new models of quantizers it is usually of 
great importance to find the manner to increase the quality of 
the quantized signal for a given bit rate or to provide 
minimization of the bit rate for the desired level of the 
quantized signal’s quality [1] - [3]. The design of a specific 
quantizer model is simpler and its realization less complex 
when the required signal quality measured by the Signal to 
Quantization Noise Ratio (SQNR), is achieved by quantizing 
signal samples with fewer bits [1] - [3]. In many modern 
applications, combination of quantizer and lossless coder is 
used. Most often, quantizer and lossless coder are designed 
separately, due to simplicity, but obtained performances are 
not optimal. However, desired performances can be obtained 
only with joined design of quantizer and lossless coder, which 
is done in this paper.  

In this paper we propose the novel model of scalar 
quantizer that has a goal to achieve as close as possible 
approaching of the bit rate to the source entropy under the 
given constrain that the SQNR value does not deviate more 
than 1dB from the optimal SQNR Lloyd-Max's quantizer 
value. In fact, the Lloyd-Max's quantizer [2], [3] presents a 
special case of the novel quantizer that is proposed in this 

paper. Unlike the two-level Lloyd-Max's quantizer having the 
decision threshold settled in zero, the novel quantizer with the 
same number of quantization levels proposes that the 
determination of the variable decision threshold is performed 
in a way that it has a non-negative value, which is designed 
depending on which SQNR has to be achieved. The basic idea 
described in this paper is that, unlike to the Lloyd-Max's 
quantizer, the asymmetry of representation levels is assumed 
such that to provide an unequal probability of representation 
levels for the symmetric Laplacian probability density 
function (PDF). This in turn provides the proper basis for the 
further implementation of a lossless compression techniques. 
Among many lossless compression techniques the most 
suitable for utilization is the extended Huffman coding 
technique that achieves the lowest average length of code 
words [3] - [5]. The performance of four types of quantizers 
with Huffman coding for small and moderate bit rate are 
analyzed in [6], where it is shown that the best performance is 
achieved by the hybrid quantizer, composed of the uniform 
quantizer and the Lloyd-Max's quantizer when Huffman 
coding technique is applied. Due to the efficient initialization 
problem of the Lloyd-Max's quantizer’s algorithm and the 
high design complexity of the Lloyd-Max's quantizer with a 
large number of quantization levels [7], as well as due to the 
lack of an effective implementation of the Huffman coding 
technique on the quantizers with large number of quantization 
levels [1], [4] - [6], we propose the quantizer having only two 
representation levels. As with the Lloyd-Max's quantizer these 
representation levels are determined from the centroid 
condition. The design procedure of the scalar quantizer having 
the representation levels also determined in accordance with 
the centroid condition for the Laplacian and Gaussian source 
is given in [8] along with the analysis of the absolute and the 
mean-square error distortion for the low bit rate. 

This paper is organized as follows. After brief introduction, 
the novel quantizer with variable decision threshold is 
described in Section 2. In Sections 3 and 4 a detailed 
description of the proposed quantizer’s code book 
determination along with the formulation of the extended 
Huffman coding is provided. The achieved numerical results 
for the proposed quantizer with extended Huffman coding and 
the Laplacian source are the topics addressed in Section 5. 
Additionally, Section 5 is devoted to the conclusions which 
summarize the contribution achieved in the paper. 
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II. DESIGN OF TWO-LEVEL QUANTIZER             

WITH VARIABLE DECISION THRESHOLD  

This section contains a detailed description of the novel 
quantizer model having variable decision threshold. 
Quantization is the process of replacing analog samples with 
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the nearest allowed value from a discrete set of N amplitude 
values [2], [3]. An N - level scalar quantizer Q is defined by 
mapping Q: R  Y, where R is the set of real numbers, and 

   is a set of representation levels that makes the code book of 
size │Y│ = N [2], [3]. Associated with every N - level scalar 
quantizer is partition of the set of real numbers into N cells 
Ri = (ti-1, ti], i = 1, …, N, where ti, i = 0, 1, …, N are decision 
thresholds and it holds Q(x) = yi, x Ri. The quantizer 
designed iteratively in accordance with the centroid condition 
and the condition of the nearest neighbor is the optimal Lloyd-
Max's quantizer [2], [3]. In other words, for a given PDF p(x) 
of the input signal of variance σ2 and for the considered 
number of quantization levels N, the minimum value of 
distortion, i.e. the maximum value of SQNR is achieved by 
using the Lloyd-Max's quantizer. The quantizer we propose in 
this paper is defined by the variable decision threshold along 
with the two representation levels (see Fig. 1) that are, as for 
the Lloyd-Max's quantizer, determined from the centroid 
condition. Particularly, this variable decision threshold we 
determine depending on the quality, measured by SQNR that 
has to be achieved. Note that in the special case, when the 
mentioned variable decision threshold has zero value, the 
proposed quantizer becomes optimal. For the assumed 
Laplacian PDF of the unit variance [2], [3] 
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the representation levels of the proposed quantizer are 
determined as follows 
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where the variable decision threshold is denoted by t1. From 
the last two equations it is obvious that the representation 
levels of the proposed quantizer are not symmetrical. 

The performances of the quantizer are often determined by 
SQNR which is defined as follows [2], [3] 
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and expressed in dB where σ2 is the variance of the input 
signal x, while D is the distortion added with quatization. 
Assuming the unit variance for the given range of SQNR 
values one can firstly determine the appropriate D values 
 

                  y1 0 t1 
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Fig. 1. Model of a two-level quantizer 
with asymmetric representation levels 
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Further defining the distortion of the proposed quantizer 
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and by combining with Eqs. 3 and 4, a closed form expression 
for the distortion of the proposed quantizer is derived as a 
function of the variable decision threshold t1 
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Using the last expression and the distortion values obtained 
from the Eq. 6 for the considered range of SQNR values, the 
appropriate value of the threshold t1 can be determined, and 
hence, the design of the proposed quantizer is enabled. 

III. EXTENDED HUFFMAN CODING                           

FOR TWO SYMBOL SOURCES 

In this section a basic concept of the very popular lossless 
compression technique, called extended Huffman coding is 
presented. The procedure of Huffman coding includes 
determining the optimal length of code words for a given 
probability of symbols [1], [3], [5], [9]. Note that it is 
sometimes beneficial to additionally reduce the bit rate by 
blocking more than one symbol together. In the mentioned 
cases, the extended Huffman coding technique is used. 
Particularly, the extended Huffman coding is the procedure of 
determining the optimal length of code words for blocks of 
two or more symbols [3], [5], [9]. 

Let us denote by p1 the probability that sample of the input 
signal has a lower value than the value of decision threshold t1  
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and by p2, the probability that sample of the iput signal has a 
greater value than the value of decision threshold t1 
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These probabilities actually refer to the symbol probabilities, 
i.e. to the probabilities of occurence of representation levels y1 
and y2. Since we consider two-level quantizer we in fact 
observe two symbol source. As the extended Huffman coding 
procedure blocks more than one symbol together, we can now 
define probabilities of two and three symbol blocks as 
 , (11) 2,1,2,1,,  jippP jiji

 . (12) 2,1,2,1,2,1,,,  kjipppP kjikji

Note that blocking two symbols together means the symbol 
alphabet size goes from m to m2, where m is the size of the 
initial symbol alphabet. In this paper, we consider two cases, 
of two and three symbol blocks, such that the size of the 
extended alphabet is 4 and 8, respectively. For the proposed 
quantizer with extended Huffman coding we examine the 
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convergence of the bit rate to the source entropy. Source 
entropy for two and three symbol blocks are given by the 
following expressions, respectively [9] 
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The average bit rate of the observed quantizer in the case of 
two symbol blocks can be determined as 
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where li,j, i = 1, 2, j = 1, 2 stands for the length of the code 
words. Similarly, the average bit rate in the case of three 
symbol blocks is determined by 
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The procedure of determining the length of the code words 
using the extended Huffman coding and the code book 
construction is consisted of the following steps: 
Step 1. Determining the symbol block probabilities, further 
sorting in descending order and finally assigning appropriate 
probabilities to the initial nodes of the graph. 
Step 2. Application of an iterative process, where in each 
iteration the connection of the two nodes with the smallest 
probabilities is done and the sum of their probabilities is 
assigned to a new node. Processing further until the nodes’ 
sum of the probabilities joining in the last step becomes equal 
to one (see Fig. 2). 
Step 3. The construction of code words. Code word for each 
symbol is determined by beginning from the tree root (node 
with probability 1) and branches, to which the allocation of 
zero value is acquired (upper branch) and 1 (lower branch). 
Assignment process continues to the left until all possible 
branches are covered. Code word is formed from zeros and 
ones that are on the path from the root to the node that 
corresponds to that symbol (see Fig. 2) 

An example of extended Huffman coding is illustrated in 
Fig. 2 for the values of symbol probabilities p1 = 0.8958 and 
p2 = 0.1041, and for the size of the symbol blocks of M = 3. In 
this case, there are 8 probability symbol blocks Pi,j,k, i = 1, 2, 
j = 1, 2, k = 1, 2, having the values given in Table I. The result 
of the extended Huffman coding procedure is an extended 
Huffman codebook which for the illustrated example is also 
given in Table I. From the Table I one can notice that the 
extended Huffman coding procedure creates variable length 
codes, where higher probability symbol blocks are coded by 
shorter codes. 
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Fig. 2. Example of extended Huffman code construction: forming the 
tree and assigning the code words 

TABLE I 
EXTENDED HUFFMAN CODEBOOK EXAMPLE 

i,j,k Pi,j,k Extended 
Huffman code 

li,j,k 

1,1,1 0.7188 0 1 
1,1,2 0.0835 100 3 
1,2,1 0.0835 101 3 
1,2,2 0.0097 11100 5 
2,1,1 
2,1,2 
2,2,1 
2,2,2 

0.0835 
0.0097 
0.0097 
0.0016 

110 
11101 
11110 
11111 

3 
5 
5 
5 

IV. ALGORITHM OF DESIGNING NOVEL 

QUANTIZER WITH VARIABLE DECISION 

THRESHOLD AND EXTENDED HUFFMAN CODING 

The determination of the proposed quantizer performance, 
for a given signal quality, i.e. the desired level of SQNR, 
consists of the following steps: 
Step 1. The determination of the distortion D by using Eq. 6 
for the desired quality of the quantized signal, i.e. for an 
assumed value of SQNR. 
Step 2. The design of the decision threshold t1 according to 
Eq. 8 for D calculated in step 1. 
Step 3. Determining the representation levels y1 and y2 (Eqs. 3 
and 4), the probabilities p1 and p2 (Eqs. 9 and 10), for the 
value of the decision threshold t1 calculated in the previous 
step. 
Step 4. Determining the symbol block probabilities Pi,j, 
i = 1, 2, j = 1, 2 (Eq. 11) and Pi,j,k, i = 1, 2, j = 1, 2, k = 1, 2 
(Eq. 12) using the probabilities p1 and p2. 
Step 5. The determination of the code word lengths by using 
the extended Huffman coding, li,j, i = 1, 2, j = 1, 2 (in the case 
of two symbol blocks), li,j,k, i = 1, 2, j = 1, 2, k = 1, 2 (in the 
case of three symbol blocks). 
Step 6. Calculating the source entropy H (Eqs. 13 and 14) and 

the average bit rate R  (Eqs. 15 and 16). 
 

237 



V. NUMERICAL RESULTS AND CONCLUSION case of three symbol blocks. Table II contains the values of 
R

 
for two and three symbol blocks, distortion, decision 

thresholds, as well as the values of probabilities p1 and p2 that 
for the considered range of SQNR are achieved by the 
proposed quantizer. From the results given in Table II and 
Fig. 3 one can observe that when the SQNR value deviats up 
to 0.5 dB from the optimal SQNR value, there is a little 
deviation of R  from H in the case of three symbol blocks. 
However, when the mentioned deviation of SQNR is in the 
range of 0.5 dB to 1 dB, a slightly larger deviation of R  from 
H can be perceived. Observe that in both ranges the increasing 
convergence of R

 
to H is achieved in the case of three 

symbol blocks. It is important to notice that for the proposed 
quantizer in the case of three symbol blocks with an average 
bit rate reduction of 0.35 bits, the reduction in SQNR of 
0.5 dB is achieved. This is about 0.9 dB smaller SQNR 
reduction for the same amount of the compression than the 
one ascertained in the considered range of R  [9]. Hence, it is 
obvious that the proposed quantizer represents a very efficient 
coding solution. Finally, from the last row in Table II one can 
notice that the optimal Lloyd-Max's quantizer is actually the 
special case of the proposed quantizer. Particularly, when the 
decision threshold t1 of the proposed quantizers is settled to 
zero, the proposed quantizer is Lloyd-Max's quantizer that has 
the symmetrical representation levels, i.e. equal probabilities 
p1 and p2. For such values of probabilities, the values of the H 
and R  of the proposed quantizer are equal and amount to one. 

Numerical results presented in this section for the proposed 
two-level quantizer with extended Huffman coding are 
obtained for the cases where the SQNR value does not deviate 
more than 1 dB from the optimal quantizer SQNR value with 
the same number of quantization levels. The optimal SQNR 
value of the Lloyd-Max's quantizer having two quantization 
levels is 3 dB, which means that the SQNR range in which we 
consider the performance of the proposed quantizer is 
[2 dB , 3 dB]. The calculated performance of the proposed 
quantizer in the case of two and three symbol blocks are 
shown in Fig. 3. Particularly, Fig. 3 shows the dependence of 
the average bit rate R  and the source entropy H on the 
distortion for the proposed quantizer in the case of the 
extended Huffman coding applied on two and three symbol 
blocks. One can notice that the R  of the proposed quantizer 
approaches the source entropy H where this convergence is 
greater in the case of three symbol blocks than in the case of 
two symbol blocks. By blocking more and more symbols 
together, the size of the alphabet exponentialy grows, and the 
extended Huffman coding technique becomes impractical [9]. 
Accordingly, in this paper our analysis is constrained to the 
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In this paper a novel class of quantizers having variable 
decision thresholds with extended Huffman coding is 
presented. Based on the proposed quantizer analysis, it is 
shown that by using the extended Huffman coding technique 
and the set of quantizers with variable decision thresholds, 
approaching of the average bit rate to the source entropy can 
be achieved. 
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