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Spectrum Optimization of Truncated Complex Hadamard 
Transform 

Rumen P. Mironov1, Roumen K. Kountchev2 

 
Abstract – An algorithm for spectrum optimization of 

truncated Complex Hadamard Transform on the base of 
minimization of mean-squared error of reconstructed transform 
coefficients is presented. The developed algorithm is simulated 
on Matlab 6.5 environment and the obtained results showed 
increasing of signal to noise ratio with about 0.5 dB.  
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I. INTRODUCTION 

Data compression, the art and science of reducing the 
amount of data required to represents 1D and 2D information, 
is one of the most useful and commercially successful 
technologies in the field of digital signal processing [1]. 
Dimensionality reduction in computation is a major signal 
processing application. One of the common compression 
approaches for reducing of spatial and temporal redundancy 
of information is based on block transform coding (BTC) [1]-
[4], in which, a reversible, linear transform is used to map 
each block into a set of transform coefficients. Discrete 
orthogonal (unitary) transforms [3], [4], used in BTC, have 
found applications in many areas of N-dimensional signal 
processing, spectral analysis, pattern recognition, digital 
coding, computational mathematic and etc. Stated simply, 
these transform coefficients that are small may be excluded 
from processing operations, such as filtering, without much 
loss in processing accuracy. 

 The discrete integer Walsh-Hadamard Transform (WHT) is 
a fairly simple orthogonal transform and is an example of a 
generalized class of Fourier transforms [3]. The idea of using 
complex, rather than integer transforms matrices for spectral 
processing, analysis and watermarking has been shown in [5], 
[6], [7] and [8]. From the Complex Hadamard Transform 
(CHT), several complex decisions diagrams are derived and 
analysis of more general CHT properties for 1D and 2D 
signals are investigated [9],[10]. 

 In this paper an algorithm for optimization of reduced 
spectrum of Complex Hadamard Transform is developed, 
using minimization of mean-squared error of reconstructed 
one- and two-dimensional signals. The obtained results 

showed increasing of signal to noise ratio with about 0.3 – 0.7 
dB for any unitary transform. 

The developed optimization algorithm is simulated on 
Matlab 6.5 environment for one test image “Lena” and the 
results of four unitary transforms – FFT, DCT, WHT and 
CHT are given. 

II. MATHEMATICAL DESCRIPTION 

Using the basic forward and inverse one-dimensional 
complex Hadamard transform for N coefficients [9],[11], the 

input signal vector  1210  Na,......,a,a,aA


 and the output 

spectral vector -  1210  Nb,......,b,b,bB


 are joined by the 

equations: 
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The discrete forward and the inverse orthogonal transform 
can be written by the following: 
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where: ijt are transform coefficients. 

The goal of the transformation process is to decorrelate the 
values of each sub-block, or to pack as much information as 
possible into the smallest number of spectral coefficients. The 
quantization stage than selectively eliminates or more coarsely 
quantizes the coefficients that carry the least amount of 
information in a predefined sense. These coefficients have the 
smallest impact on reconstructed sub-block quality. In more 
cases the first k important coefficients are saved and the next 
N-k-1 coefficients are truncated. 

The inverse decomposition from equation (2) can be written 
by the following:  
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The last N-k-1 coefficients can be substituted by the value A 
and the approximated signal can be obtained from the 
truncated expansion: 
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The difference between the input signal and its 
approximation can be given with the equation (5): 
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The mean-square error then is: 
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where:  
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is true for each orthogonal 

transform. 
The minimum of mean-square error is obtained by 

differentiation:   
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and the optimum value for truncated coefficients is: 
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The equation (8) show that the mean-square error (MSE) 
decreases for any orthogonal transform via approximation of 
reduced spectral coefficients by average of their values.   

The improvement of MSE can be calculated from equations 
(6) and (8): 
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where: 
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This algorithm can be summarized for 2D signals (images). 

The forward and the inverse discrete transform of sub-image 
g(x,y) of size NxN can be expressed as the following 
equations: 
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In this equations r(x,y,u,v) and t(x,y,u,v) are called the 
forward and inverse transformation kernels, respectively. 
Because the inverse kernel t(x,y,u,v) in (10) depends only on 
the indices (x,y,u,v) and not on the values of g(x,y) and S(u,v), 
it can be viewed as defining a set of basis functions or basis 
images. 

This interpretation becomes clearer if the equation is 
modified in matrix form: 
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where: G is NxN matrix containing the pixels of g(x,y), the 
matrices Tuv  are the basis images and S(u,v) are the spectral 
coefficients. 

We can define a transform coefficients masking function: 
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An approximation of G can be obtained from the truncated 
expansion: 
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The mean-square error between sub-image G and its 

approximation Ĝ  then is: 
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 The minimum of mean-square error is obtained by the 
following: 
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and the optimum value for the truncated coefficients is: 
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III. EXPERIMENTAL RESULTS  

The developed optimization algorithm is simulated on 
Matlab 6.5 environment for four 2D unitary transforms – 
Discrete Fourier Transform, Discrete Cosine Transform, 
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Discrete Walsh-Hadamard Transform and Complex 
Hadamard Transform. The obtained experimental results for 
the test image “Lenna” (512x512, 8 bits) with sub-image 
kernel 8x8 are given on Table 1.  

TABLE 1. 
  

Reduction type MSE NMSE 
SNR, 

dB 
PSNR, 

dB 
48 Reduced Coefficients, 16 saved 

Zero FFT 107.383 8.65x10-6 50.6263 27.8554 
Mean FFT 97.1544 7.83x10-6 51.0610 28.2902 
Zero DCT 0.5078 4.09x10-8 73.8785 51.1076 
Mean DCT 0.6590 5.31x10-8 72.7471 49.9762 
Zero WHT 19.6889 1.58x10-6 57.9934 35.2226 
Mean WHT 16.7618 1.35x10-6 58.6924 35.9216 
Zero CHT 16.0925 1.30x10-6 58.8694 36.0985 
Mean CHT 15.2343 1.23x10-6 59.1074 36.3365 

55 Reduced Coefficients, 9 saved 
Zero FFT 116.777 9.41 x10-6 50.2620 27.4912 
Mean FFT 106.358 8.57 x10-6 50.6679 27.8971 
Zero DCT 0.6828 5.50 x10-8 72.5924 49.8216 
Mean DCT 0.5800 4.67 x10-8 73.3013 50.5304 
Zero WHT 43.6631 3.52 x10-6 54.5345 31.7636 
Mean WHT 42.5557 3.43 x10-6 54.6461 31.8752 
Zero CHT 46.4509 3.74 x10-6 54.2657 31.4948 
Mean CHT 42.2766 3.40 x10-6 54.6747 31.9038 

 

In the first part of the table the results for 48 reduced 
coefficients (4x4 are saved) approximated with zero and mean 
values are shown, and in the second part the same experiments 
for 55 reduced coefficients (3x3 - saved) are shown. The 
calculated values for the mean-square error (MSE), 
normalized mean-square error (NMSE), signal to noise ratio 
(SNR) and peak signal to noise ratio (PSNR) showed 
increasing of each parameter with about 0.5 %. The input 
image is shown on Fig.1, and the output images for 48 
reduced coefficients are showed on Fig.2. 

 

 
Fig.1. Input test image “Lena” (512x512, 8 bits) 

IV. CONCLUSION 

Method for spectrum optimization of truncated orthogonal 
transforms is presented. The improvement of quality by the 
compression of one-dimensional and two-dimensional signals 

is theoretically proved. An algorithm for block truncation 
coding is developed on the base of minimization of mean-
squared error of reduced spectral coefficients reconstruction. 
The experimental results with four transformations are given. 

The main advantages of the developed algorithm are: 
- increasing the signal to noise ratio by the compression 

with truncated discrete orthogonal transforms of one- 
and two-dimensional signals; 

- decreasing the preserved coefficients and increasing 
compression ratio by the using any discrete orthogonal 
transforms; 

- using the CHT instead most complicated Fourier 
transform and keep the possibilities for working with 
complex spectrum. 

The presented spectrum optimization for discrete 
orthogonal transforms can be used in digital signal processing 
for spectral analysis, pattern recognition, digital 
watermarking, transformation, coding and transmission of 
one-dimensional and two-dimensional signals. 
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Fig.2. Output images after reduction with 48 coefficients for FFT, DCT, WHT and CHT


