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Abstract – The paper presents the design of active RC filter 
based on a new class of all-pole approximation. The 
approximating function is derived using Legendre orthogonal 
polynomial with the appropriate weights and usage of two 
Legendre multiplication factors at the origin and the passband 
edge frequency. Detailed analysis is done for the frequency 
response and tolerance analysis of active RC filters.  
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I. INTRODUCTION 

Continuous-time active RC filters are suitable for 
integration into the analog front end of mixed mode VLSI 
(Very-Large-Scale Integration) chips for communication 
systems. Programmable analog filters, and SC (Switched 
Capacitor) integrated filters, are replacing the classic analog 
filters (such as active opamp RC – operational amplifier + 
Resistor-Capacitor), but the design procedure is still based on 
the sensitivity and tolerance analysis [1, 2] in order to 
manufacture robust filters, to increase the production yield 
and to minimize the cost of mass production. The sensitivity 
and tolerance analysis allows the designer to predict variations 
of the filter performances and to predict the production yield 
(which is defined as a ratio of the number of manufactured 
filters satisfying the specification to the total number of 
manufactured filters) [1, 2].  

It is well known that in the design of filters with real 
elements, the most influential factors on the filter performance 
may be the finite tolerances and temperature changes of their 
components. However, although the deviation between the 
designed and the measured attenuation characteristics, 
especially in the pass-band, is very important in the design of 
filter functions, which satisfies the specified characteristics 
when implemented with real components, it does not seem to 
be fully covered in the literature available.  

It should be stressed that realizations using ideal 
components may disregard influence of changes due to the 
temperature variations. We are trying to overcome this 
problem using appropriate transfer function in such a way to 
minimize the summed sensitivity and thus to minimize 
temperature changes using component with the same 
temperature coefficient. In some papers, the problem was 
solved by designing filters with low Q factor of critical pair of 
poles [3–6].  

II. APPROXIMATING METHOD 

The most general form of lowpass prototype filter all-pole 
transfer function is  
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The filter order is n, K is a constant to specify the 
attenuation at s=0 (for example 0 dB), and the poles of the 
transfer function are 
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The squared magnitude response is  
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The denominator of the squared magnitude response is a 
polynomial in ω, with rael contstants a2i. The parameter 

 determines the attenuation at the pass-band 

edge, while 
)1(/ 222  

  is the pass-band reflection factor.   

The characteristic function is normalized to1 at the pass-
band edge frequency  

1)( pnA       (3) 

The squared magnitude response of new class  becomes 
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)(Pr  is the rth-order Legendre orthogonal polynomial.  

The minimum of the ratio of the reflected power and the 
transmitted power is obtained by minimizing the following 
integral 

   (5) )()()()( 2
1
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The weight )(p  is 1. Firstly, we define a function using 

conditions of the proper prototype low-pass approximation for 
odd order  
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Next, we derive partial derivatives and set a system of 
equations that should be solved in terms of , , 
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The properties of the new class of functions will be 
demonstrated by example. 

III. EXAMPLE DESIGN 

Let us design a filter of the order  with 10n 25.0 . 

The poles of the transfer function are computed using 
equations (7)-(10).  Magnitude response in dB is presented in 
Figure 1 for the 10th-order filter. It is important to notice that 
attenuation oscillates around 0dB. This type of approximation 
cannot be implemented using lossless LC filter because it has 
negative attenuation (gain) in the passband. The poles of the 
designed transfer function are 

 

The poles of the 11th-order transfer function are 

 

 
Fig. 1. Attenuation in dB of the 10th order filter.  

Figure 2 shows the summed sensitivity in the passband 
expressed in dB. Very small sensitivity in the passband 
implies that the variation of the magnitude response due to 
temperature changes will be small for the case of the same 
temperature coefficient of all elements of the same type.  

More details about summed sensitivity can be found in [1] 
and [2].  

 
Fig. 2. Summed sensitivity of the 10th order filter.  

Figure 3 shows the summed sensitivity in the passband 
expressed in dB for 11th-order filter. Again, the summed 
sensitivity is very low in the passband.  

The passband variation in dB is illustrated in Figure 4. This 
type of approximation provides very low passband variation 
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in the most of the passband, and attenuation increases at 
frequencies close to the edge frequency. Since the larges 
sensitivity and larges deviation of the attenuation due to 
element values changes are at the passband edge frequency, 
the filter can be more robust after moving the edge frequency 
into the transition region, as it is done in [7].  

 
Fig. 3. Summed sensitivity of the 11th order filter.  

 
Fig. 4. Attenuation in dB of the 11th order filter.  

 
Fig. 5. Attenuation in dB of the 11th order filter.  

Figure 4 shows that the maximum deviation can be 
controlled in a similar way as in the case of reducing the 
effect of imperfection by reducing Q factor of second order 
sections.  

 
Fig. 6. Low-pass low-Q factor biquad.  

 

Fig. 7. Low-pass medium-Q factor biquad.  

 
Fig. 8. Low-pass high-Q factor biquad.  

 
Fig. 9. Low-pass high-Q factor filter - general purpose biquad.  
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Figure 6 illustrates that the attenuation increases 
monotonically in the stopband, because this type of 
approximation belongs to all-pole approximations.  

 

The design procedure is based on the second order filter 
sections described in [2]. Some of typical biquads are swown 
in Figures 6, 7, 8, and 9.  

The general purpose second-order section can be 
implemented using programmable analog integrated circuits, 
such as biquad shown in Figure 10.  

Fig. 12. Programmable parameters of biguads.  

IV. CONCLUSION 

 

Detailed analysis of the frequency response and summed 
sensitivity in the passband for active RC filters are presented 
for a class of modified Legendre filters. The filter parameters 
can be computed for optimization of some of the filter 
property, such as to minimize the magnitude response 
deviation in the passband.  

In practice, it is more comfortable to have an application as 
executive programme, using C++ or Java, or web application 
for computing element values, filter parameters and filter 
characteristics. The future work is to develop software that 
will be available for users on different platforms.  
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