
 

HTML5 Web Sockets 

Aleksandar Kotevski1, Gjorgi Mikrovski2 and Ilija Jolevski3 

Abstract – The HTML5 Web Sockets specification defines the 
Web Sockets API that enables web pages to use the Web Socket 
protocol for full-duplex communication with a remote host. 
HTML5  Web  Sockets defines  a  channel  for full-duplex  
communication  that  operates through a single socket over the 
Web and represents a colossal advance, especially for real-time, 
event-driven web applications - significantly reduction in 
unnecessary network traffic and latency compared to legacy 
polling and long-polling solutions that are often used to push 
real-time data to clients. Through this paper should be present 
benefit from using Web socket in HTML5 and practical 
realization on several examples. 

 
Keywords- HTML5  Web  Sockets, communication, traffic 

network, protocol 

I. INTRODUCTION 

     In the existing technologies that enable pushing of data 
from a server to a subscribing client are not using true 
asynchronous communication. Instead they emulate this using 
long polling where the client polls the server for data. If no 
data exists for the client, the server does not immediately 
respond but rather, he waits for data to be available and then 
sends it to the client. This technique of delayed responses 
relies on always having an outstanding client request that the 
server can respond to. What might look like a server initiated 
communication actually relies on the client making requests to 
the server. 

II. IMPLEMENTING HTML5 WEB SOCKET 

     HTTP was originally designed for document transfer, but, 
this protocol is half-duplex (Figure 1 shows the half-duplex 
architecture), so it can’t be use in real-time communications. 
It that situation, Ajax (Asynchronous JavaScript and XML) 
can be use to build interactive Web applications, so content 
can be changed without refreshing the entire page. But, Real-
time often achieved through polling and long-polling, which is 
reason for lots of complexity. 
The latest HTML version, HTML5, introduce elements that 
integrate web front-end much tighter with server back-end. 
Most importantly, web sockets are now being introduced and 
thereby allowing browser applications to receive 

asynchronous updates from the server side, so called server 
push. Web sockets define a full-duplex communication 
channel that operates over a single socket using HTML5 
compliant browsers. Web sockets allow for true low latency 
applications and put less strain on the server.  
 

 
Figure 1: Half – duplex architecture 

. 
The goal with this paper is to implement the HTML5 web 

socket protocol for presenting real time data. Data will be 
pushed to the client without any explicit request from the 
client allowing for true asynchronous updates from the server. 
HTML5 Web Sockets is not just another incremental 
enhancement to conventional HTTP communications; it 
represents a colossal advance, especially for real-time, event-
driven web applications. In simple words the web application 
client can maintain an always open connection with the server 
and data can be sent and received at the same time. 

It runs via port 80/443, the TCP handshakes are HTTP 
compatible and it also integrates with cookie based 
authentication. The message headers have been kept small 
(only 2 bytes overhead per frame) and latency from 
establishing new connection every time as in HTTP have been 
dealt with by using a single persistent connection.  
All these result in impressive network throughput. Apart from 
that Websockets API is much simpler to code than the 
XmlHttpRequest(). Bottomline, you can make the process 
of web application developmentmore responsive and 
interactive with lesser effort. 

Today’s Web applications demand reliable, real-time 
communications with near-zero latency, not just broadcast, 
but bi-directional communication. Examples: financial 
applications, social networking applications, online games, 
smart power grid etc. 1 Aleksandar Kotevski is with the Faculty of Law, Partizanska 

BB, 7000 Bitola, Macedonia 
E-mail: aleksandar.kotevski@uklo.edu.mk. 
2 Gjorgi Mikarovski is with the Faculty of Technical science, Ivo 

Lola Ribar BB, 7000 Bitola, Macedonia 
E-mail:gjorgi.mikarovski@tfb.uklo.edu.mk. 
3 Ilija Jolevski is with the Faculty of Technical science, Ivo Lola 

Ribar BB, 7000 Bitola, Macedonia 
E-mail:ilija.jolevski@uklo.edu.mk. 

Implementing WebSocket into the HTML5 is really useful, 
because he is full-duplex, enables web pages to communicate 
with a remote host, traverses firewalls, proxies and routers 
seamlessly. HTML5 WebSocekt API has a following 
structure: 
 
 

353 

http://www.mobicules.com/web-application-development/


interface WebSocket { 
  readonly attribute DOMString URL; 
// ready state 
const unsigned short CONNECTING = 0; 
const unsigned short OPEN = 1; 
const unsigned short CLOSED = 2; 
readonly attribute unsigned short readyState; 
readonly attribute unsigned long bufferedAmount; 
// networking 
attribute Function onopen; 
attribute Function onmessage; 
attribute Function onclose; 
boolean send(in DOMString data); 
void close(); 
} 
 

III. USING HTML5 WEB SOCKET 

     HTML5 WebSocket should be use in situation where web 
application has data that must flow bi-directional 
simultaneously, when web application is used by huge number 
of users simultaneously, in situation where the web 
application must extend TCP-based protocols to the browser. 
Also, HTML5 WebSocket should be use when web 
application developers need an API that is easy to use or when 
web application must extend SOA over the Web and in the 
Cloud. 

Connection established by upgrading from the HTTP 
protocol to the WebSocket protocol using the same TCP 
connection. Once upgraded, WebSocket data frames can be 
sent to both client and server in full-duplex mode.One 
possible WebSocket architecture is shown on figure 2. 
 

 
Figure 2: WebSocket architecture 

 
To establish a WebSocket connection, the client sends a 

WebSocket handshake request, and the server sends a 
WebSocket handshake response, as shown in the following 
example: 
 
Client 

GET /demo HTTP/1.1 

Upgrade: WebSocket 

Connection: Upgrade 

Host: example.com 

Origin: http://domain.com 

Sec-WebSocket-K1: 4 @1  56846xW%3l 1 2 

Sec-WebSocket-K2: 12548 5 Y3 1  .P20 

  

^n:df[4R 
 
Server 

HTTP/1.1 101 WebSocket Protocol Handshake 

Upgrade: WebSocket 

Connection: Upgrade 

Sec-WebSocket-Origin: http://domain.com 

Sec-WebSocket-Location: ws://domain.com/test 

Sec-WebSocket-Protocol: sample 

  

8j&S'y:G*To,:xa- 

 
After receiving the response HTTP header, data will be 

transmitted according to the WebSocket protocol. This means 
at this point only WebSocket frames will be transferred over 
the wire. A frame can be sent at each time in each direction. 
The WebSocket protocol defines two types of frames: a text 
frame and a binary frame. The text will be transferred UTF8-
encoded between the start and the end byte. A text frame 
requires only 2 additional bytes for packaging purposes. 
Figure 3 shows a text frame for the string "Today" and the 
string "Sat April 25 11:20:005 2011". 

 

Text frame of "Today": 

0x22 0x47 0x65 0x73 0x44 0x61 0x41 0x65 0xFF 

 

Text frame of "Sat April 25 11:20:005 2011": 

0x00 0x53 0x61 0x74 0x20 0x4D 0x34 0x72 0x20 0x31  

0x33 0x98 0x31 0x23 0x3A 0x30 0x30 0x3A 0x34 0x35  

0x68 0x95 0x45 0x54 0x30 0xFF 
 

If the handshake was successful, then the data transfer 
starts.  

This is a two-way communication channel where each side 
can, indeendently from the other, send data.  

Data is sent in the form of UTF-8 text. Each frame of data 
starts with 0x00 byte and ends with a 0xFFbyte, with the 
UTF- text in between. The protocol is designed to support 
other frame types in future. Instead of the 0x00 byte, other 
bytes might in future be defined. Frames denoted by bytes that 
have the high bit set (0x80 to 0xFF) have a leading length 
indicator. 

The Sec-WebSocket-Key1 and Sec-WebSocket-Key2 fields 
and the 8 bytes after the fields are random tokens which the 
server uses to construct a 16-byte token at the end of its 
handshake to prove that it has read the client's handshake. 

The handshake is constructed by concatenating the numbers 
from the first key, and dividing by the number of spaces. This 
is then repeated for the second key. The two resulting 

354 



numbers are concatenated with each other, and with the last 8 
bytes after the fields. The final result is an MD5 sum of the 
concatenated string. 

The handshake looks like HTTP but actually isn't. It allows 
the server to interpret part of the handshake request as HTTP 
and then switch to WebSocket. 

Once established, WebSocket data frames can be sent back 
and forth between the client and the server in full-duplex 
mode. Text frames can be sent full-duplex, in either direction 
at the same time. Binary frames are not supported yet in the 
API. WebSocket text frames use a terminator, while binary 
frames use a length prefix. 

The following listing is example of JavaScript using the 
WebSocket interface: 
 
<html> 
   <head> 
     <script type='text/javascript'> 
        var ws = new WebSocket('ws://domain.com/test'); 
        ws.onmessage = function (message) { 
          var messages = document.getElementById('messages'); 
          messages.innerHTML += "<br>[in] " + message.data; 
        };         
        sendmsg = function() { 
          var message = 
document.getElementById('message_to_send').value 
          document.getElementById('message_to_send').value = 
'' 
          ws.send(message); 
          var messages = document.getElementById('messages'); 
          messages.innerHTML += "<br>[out] " + message; 
        }; 
     </script> 
  </head> 
  <body> 
     <form> 
       <input type="text" id="message_to_send" name="msg"/> 
       <input type="button" name="btn" id="sendMsg" 
value="Send" onclick="javascript:sendmsg();"> 
       <div id="messages"></div> 
     </form> 
  </body> 
</html> 
 
Next listing present one more example of using the 
WebSocket: 
 
Step 1: 
Create a new WebSocket connection to WebSocket server at 
test.example.com. 
var stockTickerWebSocket = new 
WebSocket("ws://test.example.com"); 
Step 2: Attach JavaScript Callback Functions 
Associate event listeners to handle each phase of the 
connection life cycle. 
stockTickerWebSocket.onopen = function(evt) { 
alert("Connection open...");  
};  
stockTickerWebSocket.onmessage = function(evt) {  

alert( "Update: " + evt.data);  
}; 
stockTickerWebSocket.onclose = function(evt) { 
alert("Connection closed.");  
}; 
 
Step 3: Send and Receive Data 
To send a message to the server, simply call the postMessage 
method on the webocket with the content you wish to send to 
the server. 
stockTickerWebSocket.postMessage("MSG: 
GOOG,100@200.25″); 
This will send the MSG message to the server. Any message 
coming from the server will be delivered to the onmessage 
callback registered in step #2. 
 
Step 4: Disconnect When Done 
When completed, call the disconnect() method to close the 
WebSocket connection. 
stockTickerWebSocket.disconnect(); 
 

As demonstrated in the example above, there are no HTTP 
requests made to the server from the client side to retrieve 
data, instead the data was pushed to the client from the server 
- when it becomes available. 
 

When a new WebSocket connection is established the 
browser opens an HTTP connection to the server first and 
then negotiates with the server to upgrade the connection to a 
dedicated and persistent WebSocket connection. This process 
automatically sets up a tunnel through to the server - passing 
through all network agents (proxies, routers, and firewalls) in 
the middle (very much like HTTPS establishing a secure, 
endtoend connection), solving numerous issues that the 
various Comet programming techniques encountered. Once 
established the WebSocket is a fullduplex channel between 
the client and the server. 

IV. COMPATIBILITY 

     Currently all browsers do not support the Websockets API. 
List of browsers that support them are: 
 Chrome 4.0 
 Firefox 4.0 beta 
 Opera 11 
 Safari 5.0.3 
 IE9 

For other browsers it’s not so clear but support will come as 
major browsers are already in line. 

Overall things appear exciting as web applications will 
become realtime and allow better resource utilization allowing 
developers to build interactive and responsive applications. 

V. CONCLUSION 

     By using HTML5 WebSockets, writing highly 
interactive real-time web applications becomes very easy and 
practical. The WebSocket API is very easy to understand andn 

355 



356 

also to use. The underlying WebSocket protocol is high 
efficient: there is a minimal overhead involved in managing a 
WebSocket. Due the fact that the WebSocket protocol runs on 
the top of TCP, the WebSocket protocol does not have to deal 
with "hacks" as do popular Comet protocols like Bayeux or 
BOSH. Simulating a bidirectional channel over HTTP leads to 
complex and less efficient protocols. Especially if only a 
small amount of data will be transferred, such as tiny 
notification events, the overhead of the classic Comet 
protocols is very high. This is not true for WebSockets. To 
establish a new WebSocket connection, the WebSocket 
protocol makes use of the connection management capabilities 
of the HTTP protocol. 

On the other hand, WebSockets do less for reliability. This 
has to be done on the application (sub-protocol) level. In 
contrast to Server-Sent events, the WebSocket protocol does 
not include reconnect handling or guarantee message delivery. 
The current WebSocket protocol represents a low-level 
communication channel only. 

REFERENCES 

[1] W3C, 2009. Html 5 specification, canvas section. 
http://dev.w3.org/html5/spec/Overview.html#the-
canvas-element 

[2] HTML5–A vocabulary and associated APIs for HTML 
and XHTML. http://www.w3.org/TR/html5/ 

[3]  HTML5 Demos and Examples. http://html5demos.com 
[4] How HTML5 Will Change the Way You Use the Web. 

http://lifehacker.com/5416100/how-html5-will-change-
the-way-you-use-the-web 

[5] Pushing real time data using HTML5 Web Sockets, 
Nikolai Qveflander 

[6] Harnessing the Power of HTML5  WebSocket to Create 
Scalable Real-time Applications - Brian Albers & Peter 
Lubbers, Kaazing 

[7] Using the HTML5 WebSocket API,Peter Lubbers, 
Brian Albers and Frank Salim 

[8] Using the HTML5 Web Workers API, Peter Lubbers, 
Brian Albers and Frank Salim 

[9] The Extensible HyperText Markup Language. Steven 
Pemberton et al.W3C, 2000 

[10] http://ezinearticles.com/?expert=Eric_D_Rowell 
[11] Web sockets now available in google chrome, 

December 2009.  
http://blog.chromium.org/2009/12/web-sockets-now-
available-in-google.html. 

[12] Ian Hickson. Google Inc. The web socket api, June 
2010. http://dev.w3.org/html5/websockets/ 

[13] Ian Hickson. Google Inc. The web socket protocol, May 
2010.http://tools.ietf.org/html/draft-hixie-
thewebsocketprotocol-75 

[14] HTML5, W3C Working Draft, 24 June 2010, Ian 
Hickson, http://www.w3.org/TR/html5/ 

[15] The Web Sockets API, W3C Working Draft, 22 
December 2009, Ian Hickson, 
http://www.w3.org/TR/websockets/ 
[16] HTML Device, Editor's Draft, 15 June 2010, Ian 
Hickson,http://dev.w3.org/html5/html-device/#peer-to-
peer-connections

 

http://dev.w3.org/html5/spec/Overview.html#the-canvas-element
http://dev.w3.org/html5/spec/Overview.html#the-canvas-element
http://www.w3.org/TR/html5/
http://html5demos.com/
http://www.w3.org/TR/html5/

