

Web Service Based Modular Architecture for 3D Web
Visualization of Geo-referenced Data

Igor Antolović1, Miroslav Milivojević2, Dejan Rančić3, Vladan Mihajlović4

Abstract – This paper presents a service based architecture for
3D Web visualization of geo-referenced data which relies on the
GinisVis library. The GinisVis visualization library combines
server .NET and client AJAX/WebGL technology as well as
modular workflow approach in order to efficiently visualize geo-
referenced data obtained from geospatial Web services like WFS
and WMS. As a proof of concept a prototype Web application
for 3D visualization of terrain and geo-referenced objects is
created. It is shown that this architecture presents a flexible and
stable platform for future rapid development of 3D Web GIS
applications.

Keywords – Modular, 3D Web visualization, Web service

I. INTRODUCTION

Web service based architectures are becoming increasingly
popular in the past few years. Applications of existing Web
services are various ranging from language translation, word
search, weather information, 2D geo-referenced map
rendering etc. Communication with Web services is
accomplished using open standards such as SOAP (Simple
Object Access Protocol) which defines the XML data message
format as well as WSDL (Web Services Description
Language) which was designed with the aim to provide Web
service description.

Availability and standardization of Web services has
greatly influenced the migration of existing desktop
architecture based applications into the Web environment.

Existing solutions for client-server based 3D data
visualization rely mostly on thin Web clients. These are
simple Web clients which are able to display a 3D model
image which is entirely generated on the server side. This
approach has shown to be very reliable in the past since Web
technologies did not allow 3D rendering on the client side.
Other existing alternatives require installation of additional
plug-ins which would lead to many problems in terms of
compatibility and usability.

In this paper, special attention will be devoted to Web
applications for 3D data visualization which have become
practically possible with the recently introduced WebGL

standard [1] which provides hardware support for OpenGL ES
2.0 within the standard Web browsers.

The aim of this paper is to consider a Web service
architecture, which should serve as a solid and flexible
platform for efficient development of 3D Web GIS
(Geographic Information Systems) applications [2,3] that
would enable geo-referenced 3D object rendering using open
standard Web technologies. It is important to emphasize that
the starting point in designing this architecture is based on a
workflow methodology. The basic concept of this idea is
shown in Fig. 1.

Fig. 1. Basic workflow graph

The data from the source domain is first filtered and then

mapped on geometric primitives which can be rendered and
than displayed. Within this kind of system the data can pass
through one or more filters. Each filter usually implements a
relatively simple function which processes the input data by
additionally taking into account various input parameters.

This paper first gives an overview of existing 3D Web data
visualization solutions followed by a description of the
GinisVis client-server architecture. Finally a minimum set of
modules is introduced in order to enable modeling of a 3D
terrain as well as 3D geo-referenced buildings.

II. RELATED WORK

There are many examples of desktop environments that
provide a user interface for interactive workflow creation in
order to obtain rather complex data visualizations. Among
such applications one example is VisTrails[4] which is a
scientific workflow management system that provides rich
support for data exploration and visualization and relies on the
VTK[5] (Visualization Toolkit) library that implements a
wide set of algorithms for 3D data processing. This and
similar environments have influenced the development of
various Web based data visualization applications in the past
several years. Among existing 3D Web visualization solutions
ParaviewWeb[6] is distinguished by its robustness and
capabilities. This environment is based on a thin client which
provides 3D data display as well as an intuitive user interface,
while the rendering is done on the server side. Paraview also
relies on VTK thus offering a wide set of data visualization

1Igor Antolović is with the Faculty of Electronic Engineering,
Aleksandra Medvedeva 14, 18000 Nis, Serbia,
E-mail: igor.antolovic@elfak.ni.ac.rs.

2Miroslav Milivojević is with the Faculty of Electronic
Engineering, Aleksandra Medvedeva 14, 18000 Nis, Serbia,
E-mail: miroslav.milivojevic@elfak.ni.ac.rs.

3Dejan Rančić is with the Faculty of Electronic Engineering,
Aleksandra Medvedeva 14, 18000 Nis, Serbia,
E-mail: dejan.rancic@elfak.ni.ac.rs.

4Vladan Mihajlović is with the Faculty of Electronic Engineering,
Aleksandra Medvedeva 14, 18000 Nis, Serbia,
E-mail: vladan.mihajlovic@elfak.ni.ac.rs.

369

mailto:.milivojevic@elfak.ni.ac.rs

algorithms which can be somewhat observed as a kind of a
downside of this and similar environments. Namely the user
must choose between great number of algorithms in order to
get the best output results thus making his task sometimes
time-consuming. Another solution which is designed to work
in a client-server environment and deals with the previously
described problem is Envision[7]. What is distinctive about
this solution is that it provides the user the ability to describe
the basic features of the input data hence enabling the system
to offer only a reduced set of visualization algorithms. In this
way, the user is greatly relieved because he does not have to
choose manually between hundreds of available algorithms.
Unlike previous solutions, [8] describes a Web service that is
based on the IRIS Explorer system. The described architecture
relies on a Web service which generates VRML (Virtual
Reality Modeling Language) models hence the client side
needs a VRML viewer application that can be installed as a
browser plugin.

What is common for most of this solutions is that they rely
on thin clients therefore providing the highest level of
compatibility with existing Web browsers. However, as
WebGL API is becoming the leading standard for 3D Web
visualization on the Web it is now possible to create true Web
3D applications capable of fully using modern graphic
acceleration hardware.

The combined concepts of workflow based data
visualization and WebGL enabled clients directly influenced
the design of the GinisVis Web service architecture.

III. GINISVIS ARCHITECTURE

The GinisVis Web client-server architecture is built on top
of the server side GinisVis.NET as well as the client side
GinisVis AJAX library. Both of this libraries are in fact a
migration of the GinisVis C++ library described in [9].

a) b)

Fig. 2. a) Single module architecture, b) Basic workflow
example

The GinisVis library supports a workflow methodology

which is based on assigning parts of the visualization process
to smaller functional units in the form of modules. In the
process of visualization, every module should execute a
relatively simple processing of the input data and generate an
appropriate output. A simplified architecture of a single
module is shown on Fig.2.a).

The real advantage of this modular approach lies in the
possibility of module linking as shown in Fig.2.b). It is
important to note that the corresponding output ports of
module M(A) and M(B) must be compatible with the
corresponding input ports of module M(D). Also in the
process of execution of modules, M(D) can be executed only
after executing the modules M(A) and M(B). After execution
off all modules a final destination output is created. More
precisely the described architecture is designed to generate
outputs in a form of 3D models.

A detailed view of the client-server architecture is shown in

Fig.3.a), where we clearly distinguish three parts:
 Data sources – they can be various but standard

OGC (Open Geospatial Consortium) Web services
are preferred like WMS (Web Map Server) which
provides geo-maps for requested regions and WFS
(Web Feature Server) which provides geo-feature
information,

 GinisVis Web Service – relies on the GinisVis.NET
library, contains a set of module implementations
and descriptions and provides an engine for module
workflow creation and execution,

 GinisVis Client – relies on the GinisVis AJAX
library and provides rich 3D rendering of models
retrieved from the service.

The GinisVis Web service consists of the following

components:
 Modules – a set of DLL libraries and corresponding

XML descriptions where each module can
implement data filter, data source or an algorithm,

 Module Manager – is a component that performs
registration of all available modules,

 Module Graph – is a structure that represents the
current data flow graph that is executed,

 Module Graph Manager – is a component that
performs workflow graph execution.

The client retrieves generated 3D models in a two step

procedure. The first step is to obtain only the geometry of the
model that contains texture URLs, resulting in an additional
texture download request. These problems can be solved by
introducing Image Buffer and Buffer model components as
shown in Fig.3.b). The Image buffer is a component that
provides temporary storage of textures on the server side
allowing them to download through sequential call to the
GinisVis Web service. More precisely, this component assigns
each image a unique ID which is used to link with the
corresponding 3D model. After the texture is retrieved it is
been automatically deleted from the buffer. On the other hand
the Model Buffer component has an identical role as the
Image Buffer but it handles geometry instead. This two
components form an efficient buffering mechanism which
overcomes the inability to send both the model and all
textures at once.

370

a) b)

Fig. 3. a) GinisVis client-server arhitecture, b) GinisVis buffering subsystem

Considering all service side components the

communication between the GinisVis client and the GinisVis
Web service can be described as follows:

1. The client invokes the GetCapabilities service side
method.

2. The Web service responds with a list of available
modules.

3. The client invokes the RunModuleGraph Web
method sending a XML workflow configuration of
linked modules.

4. The service receives the request, initializes dynamic
module loading, performs module linking, executes
the workflow and sends back the generated XML
output in a form of a 3D model list.

5. The client retrieves the generated output and starts
model downloading by invoking the GetModel Web
method. After model retrieving the client invokes
subsequent GetImage requests in order to obtain
model textures.

In order to test the concept of the described architecture,

necessary modules for terrain and 3D building modeling are
considered below. As already stated, our primary motivation
of is to design a platform that will provide efficient future
development of 3D Web GIS applications.

IV. VISUALIZATION

Visualization of 3D terrain models has always been the first
and foremost requirement in GIS applications. This resulted in
a great number of algorithms (both static and dynamic [11])
for 3D terrain visualization. However, it is not our goal to
create a fully optimized algorithm for terrain visualization but
rather to transpose the process of terrain modeling into a
workflow graph.

Basically a terrain model consists of a height matrix based
mesh overlayed with a geo-referenced texture for a given
region. The starting point for generating such a mesh is the
data flow graph shown on Fig.4.a) (bottom).

This data flow graph consists of the following modules:
 WMS proxy – a proxy module that retrieves a geo-

referenced image from a WMS service.
 DEM (Digital Elevation Map) proxy – a proxy

module that retrieves a height matrix from a DEM
service.

 Terrain Modeler – a module that generates a simple
3D triangle geometry based on a input height matrix.

 Mesh 3D – a module that combines both texture and
geometry and produces a textured 3D.

 Project – a module that converts geo-spatial
coordinates into Cartesian coordinates.

 ColladaExporter – a module that exports 3D Mesh
into XML COLLADA [10] models.

In contrast to terrain models, 3D buildings can have a

moderately complex structure which can make the process of
their modeling a rather difficult task, but one of the most
practical ways of modeling is based on contour elevation as
shown on Fig.4.a) (top).

Some of the modules required for building modeling are
reused but also additional modules were created:

 WFS proxy – a proxy module retrieves a collection of
features from a WFS service by invoking a GetFeature
request. What is important is that every feature consists
of great number of attributes among which the
Geometry attribute represents a 2D geo-referenced
contour.

 Building modeler – a module that generates a 3D
building model based on a input contour geometry
obtained from WFS features.

In both cases the Project module has a very important role

since it converts the model from geo-referenced space into
Cartesian space. The input models can have geometries which
are positioned in one of the standard geo-coordinate systems
(e.g. WGS84 where every point is determined by a longitude,
latitude and height value) while the output model has standard
Cartesian (x,y,z) coordinates. There are two types of models
which can be handled by this module:

 Multipoint geo-referenced – these are the models
that are geo-referenced for every point in their
geometry. The terrain for example is one such model.

 Singlepoint geo-referenced – these are the models
that are geo-referenced with a single point usually
the center of mass. In our case 3D buildings belong
to this category.

The final result in a form of a combined 3D model of a
terrain and buildings is shown on Fig.4.b) where the rendering
is performed using the WebGL based GinisVis AJAX client
which enables interactive visualization of COLLADA models.

371

a) b)

Fig.4.a) Terrain and building workflows b) Final result rendered using the GinisVis AJAX WebGL based client

V. CONCLUSION

The lack of proper support for 3D visualization within the
Web browsers has resulted in Web data visualization solutions
that rely mainly on thin clients which are able to show images
of 3D models that are fully rendered on the server side. The
recently introduced WebGL standard that provides support for
OpenGL ES 2.0 enables hardware rendering within Web
browsers. This technology enables the design of more
powerful Web based 3D model rendering clients eliminating
the need to install additional browser plug-ins.

In this paper, we introduced the GinisVis Web client-
service architecture that takes advantage of both current Web
open-source standards and workflow graph methodology. The
idea of a workflow approach is that the Web service handles a
collection of modules which individually perform rather
simple functions but connected within a workflow graph they
can produce rather complex 3D models. Also, the GinisVis
client server architecture emphasizes the advantage of Web
technologies and the usage of standard OGC services as data
sources (WMS, WFS, etc.) as these services play an important
role in GIS applications.

A proof of concept was provided by creating a minimum
set of modules that allow 3D terrain and geo-referenced
buildings modeling by using a WMS service as a source of
aerial photographs and WFS service as a data source for
building contours.

The main advantage of the GinisVis Web service is that it
forces open standard protocols as well as technologies, and
furthermore, it is based on a modular workflow architecture
thus it can be easily extended with new modules. All this
features make this architecture an ideal platform for building
future rich 3D Web GIS applications.

REFERENCES

[1] http://www.khronos.org/webgl/
[2] D. Rančić, D. Dačić, “Ginis web 3D modeler - a framework for

3D terrain visualisation on web”, 8th AGILE Conference on
GIScience, May 26-28, 2005, Estoril Congress Center, Estoril,
Portugal

[3] D. Rančić, A. Dimitrijević, V. Mihajlović, "GIS and Virtual
Reality Systems Integration", ICEST 2004, Bitola, Macedonia,
pp. 313-316, 2004.

[4] Steven P. Callahan , Juliana Freire , Emanuele Santos , Carlos
E. Scheidegger , Cláudio T. Silva , Huy T. Vo, „VisTrails:
visualization meets data management“, Proceedings of the 2006
ACM SIGMOD international conference on Management of
data, June 27-29, 2006, Chicago, IL, USA

[5] William J. Schroeder , Kenneth M. Martin , William E.
Lorensen, „The design and implementation of an object-oriented
toolkit for 3D graphics and visualization“, Proceedings of the
7th conference on Visualization '96, p.93-ff., October 28-29,
1996, San Francisco, California, United States

[6] K.M. Martin, B. Geveci, J. Ahrens, C. Law, „Large Scale Data
Visualization Using Parallel Data Streaming “. IEEE Computer
Graphics & Applications, (July 2001)

[7] G. P. Johnson, S. Mock, B. Westing, G. S. Johnson, EnVision:
„A Web-Based Tool for Scientific Visualization“, CCGRID '09
Proceedings of the 2009 9th IEEE/ACM International
Symposium on Cluster Computing and the Grid IEEE Computer
Society, Washington, DC, USA, 2009

[8] J. Wood, K. Brodlie, J. Seo, D. Duke, „A Web Service
Arhitecture for Visualization“. ESCIENCE '08 Proceedings of
the 2008 Fourth IEEE International Conference on eScience
IEEE Computer Society, Washington, DC, USA, 2008

[9] I. Antolović, V. Mihajlović, D. Rančić, M. Milivojević,
“GinisVIS: Data flow control graph based 3D visualization
framework”, YUINFO 2010, Kopaonik

[10] Dejan Rancic, Aleksandar Dimitrijevic, Bratislav Predic,
"Spatial Coherency and Parallelism in Blocks Reorganization of
RINGO Algorithm for Large Terrain Rendering", WSEAS
Transaction on Computers, Vol. 5, No. 12, pp. 3073-3079,
December 2006,

[11] http://www.khronos.org/collada/

372

http://www.khronos.org/webgl/
http://www.khronos.org/collada/

