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Abstract – This paper proposes a trajectory tracking controller 
for a two degree of freedom (2-DOF) overhead crane. First, a 
dynamic model of the crane suitable for feedback control is 
developed using robotic methodology. A desired trajectory for 
the trolley motion is generated using a reference differential 
equation. The proposed control law is based on collocated partial 
feedback linearization combined with trajectory tracking and 
linear feedback control which achieves local asymptotic stability 
of the closed-loop system. Simulation results illustrate the 
effectiveness of the proposed controller. 
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I. INTRODUCTION 

In the last decades, the overhead cranes have been widely 
used for transportation in many industrial applications and 
become an interesting issue from automatic control point of 
view. The goal is to transport the payload quickly and in the 
same time to reduce the rope swing angle. Recently, different 
techniques been proposed for the design of Linear Quadratic 
[1, 2], adaptive [3], nonlinear coupling control [4] controllers 
for overhead cranes. The overhead cranes belong to the class 
of underactuated mechanical systems, which have fewer 
control inputs than degrees of freedom. One of the 
complexities of these systems is that they are not feedback 
linearizable. Due to the positive definiteness of the inertia 
matrix of this class of systems, the so-called collocated partial 
feedback linearization property [5] holds, which refers to the 
control that linearizes the equations associated with the 
actuated degrees of freedom of the system. Available control 
design methods mainly include approximate linearization [6] 
and saturation control [7].  

In this paper, we propose a simplified control strategy 
based on collocated partial feedback linearization of the 
dynamic model combined with trajectory tracking and linear 
feedback control law, which achieves local asymptotic 
stability of the closed loop system. The organization of the 
paper is as follows: In Section II, a dynamic model of the 
crane suitable for feedback control applications is derived. 
The Problem formulation is given in Section III.  In Section 
IV, a control law is designed. Section V contains simulation 
results. Conclusions are presented in Section VI.  

 
 

II. DYNAMIC MODEL 

A schematic view of an overhead crane is shown in Fig. 1. 
In order to derive a dynamic model suitable for control 
applications, we make the following assumptions: the payload 
mass is considered as a point-mass, and the mass and stiffness 
of the hoisting rope are neglected. The system has two degree-
of-freedom and the associate generalized coordinates are  
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where d is the displacement of the trolley and θ is the swing 

angle of the load, (Fig. 1). 
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Fig. 1. Schematic of the overhead crane 
 
We use the Denavit-Hartenberg convention [8] for the 

description of the crane kinematics. An inertial coordinate 
system O0x0y0z0 is assigned in the work space where the z0 
axis is in direction of the trolley displacement.  The z1 axis of 
a moving together with the trolley coordinate frame O1x1y1z1 
is the axis of revolution of the rope. The z2 axis of the 
coordinate frame O2x2y2z2 which is attached to the payload is 
parallel to z1.  The link parameters are given in Table I where 
the four quantities ai, di, αi, and θi are parameters of link i and 
joint i, (i = 1,2). 

 

TABLE I 
PARAMETERS FOR A 2-DOFS OVERHEAD CRANE 

Parameters Link 1 Link 2 
        ai [m]     0     l 
        di [m]  d=var    0 
        αi [rad]     π/2    0 
        θi [rad]      0 θ = var
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The corresponding transformation matrices which define 
the relative position and orientation between the adjacent 
coordinate systems are 
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Using the transformation matrices (2), the coordinates of 
point O2 with respect to O0x0y0z0 are 
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  The dynamic equations of motion of the crane are derived 
using Lagrange formalism 
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, i = 1,2                (4) 

where the Lagrangian L represents the difference between 
the kinetic and potential energy of the system, and Qi are the 
generalized forces associated with the generalized 
coordinates. 

 The kinetic energy of the system is obtained as follows 
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where M and m are the mass of the trolley and the load, 
respectively and l is the length of the rope.  

The potential energy of the system is given as  
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Using  Eqs. (3), (4), (5) and (6), the dynamic equation of 
motion of the overhead crane are obtained in the form 

 
                                  QGqCqD                            (7) 

where 
 

       ,       ,  






 
 2cos

cos

mlml
mlmM

D










 


00

sin0  ml
C

               ,                                       (8) 









sin

0

mgl
G 










0

F
Q

where F is the control force acting on the trolley. 
 
Remark 1: It should be noted that the matrix D is positive 

definite and the matrix   is skew-symmetric. CD 2/1

III. PROBLEM STATEMENT   

In this paper, we consider the problem of position control   
of the overhead crane. The goal is to transport the payload 
quickly with high precision, and in the same time to reduce 
the swing angle which does not exceed 50 through the entire 

trajectory of the trolley. The desired trajectory for the trolley 
motion is proposed in the integral form 
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the tro y, and ρ is a double root of a desired linear  
differential equation describing the trolley motion, ( a larger  ρ  
leads to a faster motion of the trolley and as a consequence, a 
bigger swing of the payload). 

We make the following chan
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equations (7) for the crane can be written in error coordinate   
form as  
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ven the crane dyna ates described by 
(13), the control objective is to asymptotically regulate ze(t) to 
zero (transportation of the payload) and minimize the swing 
angle θ(t) of the payload.  

IV. F DBACK CONTROL DESIGN 

o-output (ze, θ) system.  The control problem consists in 
finding a feedback control law for the system (13) such that  
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Denoting  and , for small swing angles, the 

tangent linearization of Eqs. (16) about θ = 0 can be  written 
in state-space form as  

zee vz   
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The system (17) can be viewed as a perturbation of the 
nominal system , which has exponentially stable 

equilibrium point at the origin x = 0, and is a uniformly 

bounded disturbance that satisfies 
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Furthermore,  as 0)( tdz t . Using Lemma 4.9, [9, p. 

208], for the perturbed system (17), it can be shown that 
 as 0)( tx t . Based on Lyapunov’s linearization 

(indirect) method [9], one can be concluded that the 
corresponding nonlinear system is locally asymptotically 
stable. 

V. SIMULATION RESULTS 

Several simulations using MATLAB were carried out in 
order to illustrate the performance of the proposed controller. 
The desired trajectory of the trolley is given by (9) where the 

desired distance to travel is = 7m and ρ = 0.5. The 

overhead crane is tested with a mass of 200kg and 300kg for 
the trolley and the payload, respectively. The length of the 
rope was chosen to be l = 5m. In the first simulation, from Fig. 
2, we can see the evolution in time of the swing angle θ 
during the displacement of the trolley. Fig. 3, presents the 
evolution in time of the movement of the trolley d according 
to desired trajectory zd(t). The results of the simulations 
confirm the validity of the proposed controller.  

dz0

VI. CONCLUSION 

In this paper, a trajectory tracking controller for a 2-DOF 
overhead crane has been proposed. A dynamic model of the   
crane was developed using robotic methodology. A desired 
trajectory for the trolley motion was generated using a 
reference differential equation. The proposed control law was 
based on collocated partial feedback linearization combined 
with trajectory tracking and linear feedback control and 
achieved local asymptotic stability of the closed-loop system. 
Simulation results were carried out and confirmed the 
effectiveness of the proposed controller.  
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Fig. 2. Time history of the swing angle of the payload 
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Fig. 3. Time history of the trolley displacement (solid line), desired 
trajectory (dashed line), and tracking error (dotted line) 
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