

Analysis of Possibilities to Overcome the Transient Faults
in Real-time Systems with Time Redundancy

Sandra Djosic1, Milun Jevtic2 and Milunka Damnjanovic3

Abstract – In this paper we analyze timing constrains of one
fault tolerant real-time system. Our goal is to estimate a
probability of overcoming a transient fault detected during tasks
executions. The faults are overcoming using technique of
executing task again and time redundancy. Response time
analysis (RTA) is the basis of our research and it is used to find
minimum time between two consecutive faults which real-time
system can tolerate. We have modified RTA to get more reliable
real-time system.

Keywords – Real-time system, Fault tolerance, Time
redundancy.

I. INTRODUCTION

A system is said to be real-time if the total correctness of an
operation depends not only upon its logical correctness, but
also upon the time in which it is performed, [1]. Real-time
systems play an important role in many areas of the daily life:
robotics, cosmic research, automotive industry, process
control, factory automation….

Those systems have been designed in order to be safe and
extremely reliable. Reliability in a real-time system means
that it can run continuously for extended periods of time:
typically for years without any failures, [2]. They are usually
realized as real time systems with the ability of tolerating
some faults, [3]. A fault-tolerant system has to ensure that
faults in the system do not lead to a failure.

The focus of our research is transient faults. Transient faults
are temporary malfunctions of the computing unit or any other
associated components, and cause an incorrect result to be
compute. Transient faults can be caused by a variety of
sources, such as atmospheric nuclear particles (alpha-
particles, protons and neutrons) or electrical noise (power
supply noise or electromagnetic interference), [3].

The key to fault tolerance is redundancy. It can be said that
redundancy is the addition of information, resources, or time
beyond what is needed for normal system operation [4]. There
are of three kinds: hardware redundancy, software redundancy
and time redundancy. Hardware redundancy is the addition of
extra hardware to the system, such as spare processors which
are used if one of the running processors fails. Software
redundancy is the use of extra software modules to verify the

result, or to use multiple versions of a program. Time
redundancy is the use of additional time to perform the
functions of a system. This time might be used to re-execute a
faulty task or to execute a different version of the task. We are
particularly interested in time redundancy techniques, since
they are cost-effective as well as more suitable to applications
where there are severe constraints on space and weight.

So, if a fault occurs during real-time task execution then it
is necessary to overcome that fault and satisfies all timing
constraints. We assume that the faults are overcoming using
time redundancy and technique of executing task again. Our
first analysis of transient fault tolerance in hard real-time
systems with time redundancy was presented in [5]. In this
paper we analyze possibilities to overcome the transient faults
using response time analysis (RTA). More about RTA can be
found in [6].

We use response time analysis to find minimum time
(period) between two consecutive faults which real-time
system can tolerate. For that period RTA guaranties that
analyzed real-time system will be fault tolerant. If new fault
occurs during that calculated period of time then RTA cannot
guaranties overcoming of that fault. We saw that as a problem
and our task was to modify RTA in order to obtain a
guarantee for the case that extra fault occurs.

During modification we started with assumption to provide
enough time redundancy for re-execution of the highest
priority (the most critical) for the case of fault tolerance.
Consider added extra time we modify the base RTA equation
and present it in the paper. Our goal is to analyze how added
time redundancy can be used for tolerance some new (extra)
faults in the RTS. We use MATLAB for all calculations
related to the RTA and the modify RTA.

The rest of the paper is organized as follow: Section II deals
with the existing RTA applied on non-faulty RTS (part A) and
faulty RTS (part B). Part C of Section II presents the research
problem and our modification of RTA. Section III offers our
conclusion.

II. ANALYSIS OF REAL-TIME SYSTEMS TIMING

CONSTRAINS

A. Non-faulty RTS
1Sandra Djosic is with the Faculty of Electronic Engineering,

Aleksandra Medvedeva 14, 18000 Nis, Serbia,
E-mail: sandra.djosic@elfak.ni.ac.rs.

2Milun Jevtic is with the Faculty of Electronic Engineering,
Aleksandra Medvedeva 14, 18000 Nis, Serbia,
E-mail: milun.jevtic@elfak.ni.ac.rs.

3Milunka Damnjanovic is with the Faculty of Electronic
Engineering, Aleksandra Medvedeva 14, 18000 Nis, Serbia,
E-mail: milunka.damnjanovic@elfak.ni.ac.rs.

In this paper we consider only a uniprocessor system where
algorithm for scheduling real-time tasks could be Rate
Monotonic, Deadline Monotonic [7] or any other priority
assignment algorithm. We assume that each task is assigned a
unique priority and that a task can be immediately preempted
by a higher priority task. At run time, the highest priority task
from the set of runnable tasks is allocated processor time.

417

We assume a set of n tasks, Γ={τ1,..., τn} in which tasks are
ordered according to the assigned priorities, where 1 denotes
the highest priority and n denotes the lowest priority. Each
task τi is assumed to have a minimum inter-arrival time Ti,
worst case execution time (WCET) Ci and deadline Di. We
assume that Di ≤ Ti, for i = 1, 2, . . . , n. We use hp(i) to denote
the set of tasks with higher priorities than i, hp(i)={τjΓpj >
pi}.

If there are no faults in the system then the response time of
task τi can be evaluated using Eq. (1). Here the response time
Ri, of a task τi, is expressed as the sum of its WCET Ci and
interference due to preemption by higher priority tasks. If we
can find , which satisfies the Eq. (1):  ii D,0R  

 
 













)i(hpj
j

j

i
ii C

T
R

CR (1)

then task τi is feasible. The smallest value of Ri which satisfies
the Eq. (1) is the worst case response time of task τi. Since Ri
appears on both sides solutions can be obtained using the
following recurrence relation:

 

















)i(hpj
j

j

n
i

i
1n

i C
T
R

CR (2)

Iteration starts with . When we have found a

minimum solution, that is Ri. If then task τi is

infeasible and iteration is terminated.

i
0
i CR  n

i
1n

i RR 

i
1n

i DR 

TABLE I
TASK SET - CASE I

Task
Task characteristics
 Ci Ti Di pi

Ri

τ1 30 100 100 1 30
τ2 35 175 175 2 65
τ3 25 200 200 3 90
τ4 30 300 300 4 150

Fig. 1 presents scheduling of two periodic real-time tasks τi

and τj when there is no fault in the system. System of these
two tasks are schedulable i.e. both tasks execute before their

deadlines, Di and Dj. Response time of tasks τi and τj are the
output results of RTA and they are also shown on Fig. 1.

We illustrate this procedure for a task set consisting of four
periodic tasks. Timing characteristics for these four tasks are
shown in Table I. Using Eq. (2) we found the value for the
response times of the complete task set (last column in Table
I). For all four tasks we got that Ri < Di, for i = 1, 2, 3 and 4,
which means that all tasks finished before their deadlines. It
can be concluded that the real-time task set – case I is
schedulable.

Fig. 1. Response time of tasks when there are no faults in the system

B. Faulty RTS

The fault-free assumption for one RTS is in fact not
realistic because “non-faulty systems hardly exist, there are
only systems which may have not yet failed”, [6]. So, if a fault
occurs during real-time task execution then it is necessary to
overcome that fault and satisfy all timing constraints of real-
time tasks. We consider transient fault and assume that the
effects of a fault can be eliminated by simple re-execution of
the affected task at its original priority level. Now, the
response time analysis can be describe using Eq. (3):

)C(max
T
R

C
T
R

CR ji)i(hpjF

i

)i(hpj
j

j

i
ii

























  (3)

Eq. (3) has one more addend (then Eq. (1)) due to possible
faults in the system. If we assume that inter-arrival time

between faults is TF then there can be at most 








F

i

T
R

 faults

during the response time Ri of task τi. Since these faults could
occur during the execution of task τi or any higher priority task
which has preempted τi, each fault may add to

the response time of task τi. So, the third addend in Eq. (3)
presents an extra time needed tasks recovery due to faults.

)C(max ji)i(hpj 

Since Ri appears on both sides we need again recurrence
relations:

)C(max
T

R
C

T

R
CR j

i)i(hpj
F

n
i

)i(hpj
j

j

n
i

i
1n

i 























  (4)

Eq. (4) calculates the response times of tasks in the
presence of faults if the interval between two faults is TF.
Recurrence relations also starts with . When

we have found a minimum solution, that is Ri. If i

then task τi is infeasible and iteration is terminated. Minimum
value for TF which satisfies Eq. (4) presents minimum time
between two consecutive faults which real-time system can
tolerate.

i
0
i CR  n

i
1n

i RR 

1n
i DR 

Fig. 2 illustrates RTA applied on faulty RTS. It can be seen
scheduling of the same real-time tasks τi and τj when two
faults occur in the system. Time between two consecutive
faults TF is long enough and real-time system can tolerate
these faults. First fault occurs just a little bit before the end of
tasks τj1 execution. Real-time system overcomes this fault by
executing task τj1 again. Output results of RTA, response time

418

Fig. 4. Algorithm for finding minimum TF

Fig. 2. TF is long enough and RTS is fault tolerant

Fig. 3. TF is not long enough that RTS stays fault tolerant

of tasks τi and τj, for the assumed value TF are shown on Fig.
1.

Fig. 3 presents scheduling of the same real-time tasks τi and
τj when two faults occur in the system. Now, time between
two consecutive faults TF is not long enough and real-time
system cannot tolerate these faults. First fault occurs just a
little bit before the end of tasks τi1 execution. Real-time
system can overcomes this fault by executing task τi1 again.
Second fault occurs just a little bit before the end of tasks τj1
execution. Now time redundancy is not enough to tolerate this
fault. Systems starts procedure for overcoming fault by
executing task τj1 again but timing characteristics of tasks τj1
cannot be satisfied and τj1 missing its deadline i.e. Rj > Dj.
This is not acceptable in one hard real-time system, so in this
case real-time system is not fault tolerant.

TABLE II
TASK SET - CASE I

Task
Task characteristics
 Ci Ti Di pi

TF=300
Ri

TF=200
Ri

TF=275
Ri

τ1 30 100 100 1 60 60 60
τ2 35 175 175 2 100 100 100
τ3 25 200 200 3 155 155 155
τ4 30 300 300 4 275 340 275

In Table II, we present the response times of the task set

used in Table I for two different fault inter-arrival times. With
a minimum fault inter-arrival time of TF = 300 the task set is
schedulable, but it is not schedulable with TF = 200.

Based on Eq. (4) we realized algorithm (Fig. 4) for finding
minimum time between two consecutive faults which real-
time system can tolerate. We start from the minimum possible
value for TF and for that value we calculate response time for
each task. After that, it is necessary to check is the real-time
system fault tolerant. Depends on answer we continue process
with increment value of TF (“true” answer) or finish it (“not
true”) finding minimum TF.

Using presented algorithm we calculated minimum TF for
the same task set – case I. The value for TF is 275 and the
response time of the tasks is shown in the last column of
Table II.

C. Modification of RTA

Using RTA and our presented algorithm we can find
minimum time (period) between two consecutive faults which
one real-time system can tolerate. If minimum time between
two faults is equal or greater then TF then RTA can guaranty
that this real-time system will be fault tolerant. But if
minimum time between two faults is less then TF then RTA
cannot guaranties tolerance of that fault. For that case we have
modified RTA to get fault tolerant RTS. The basic idea for
modification was to ensure enough redundancy for the highest
priority task and to use this extra spare time for potentially
less priority tasks re-execution.

Let’s illustrate idea with one simple real-time task set
shown in Table III. If we apply presented algorithm on task
set from Table III we can conclude that RTS is fault tolerant if
TF is 60 time units.

Let’s ensure 100% redundancy for the task τ1, doubling his
execution time. New WCET for task τ1 is:

C1 = C1task +C1extra = 20+20 = 40

where C1task is WCET of tasks τ1 and C1extra is an added time
needed for tasks τ1 re-execution. We applied presented
algorithm with new input parameters and have got the result
shown in Table IV.

419

TABLE III
TASK SET - CASE II

Task
Task characteristics
 Ci Ti Di pi

TF=60
Ri

τ1 20 100 100 1 40
τ2 25 175 175 2 95
τ3 20 200 200 3 160
τ4 25 300 300 4 300

420

Now, response time for task τ1 is R1 = 80. This value is not

correct because we already doubling WCET for task τ1 for
fault tolerant case. More correct value for R1 is 40 time units,
even in the worst case. Time period of 40 units is long enough
for executing task τ1 and to re-execute it in the presence of
fault.

TABLE IV
TASK SET - CASE IIMOD

Task
Task characteristics
 Ci Ti Di pi

TF=275
Ri

TFmod=143
Rimod

τ1 40 100 100 1 80 40
τ2 25 175 175 2 145 90
τ3 20 200 200 3 165 175
τ4 25 300 300 4 275 285

To get more correct result we needed to modify Eq. (3) and

we got new equation:

)C(max
T
R

C
T

R
CR j)imod(hpjmodF

modi

)i(hpj
j

j

modi
imodi

























  (5)

 The main difference between Eq. (3) and Eq. (5) is within
the third addend. We needed to eliminate the possibility that
fault can occurs within task τ1. Because of that we have new
task set for the third addend hpmod(i)={τjΓmodpj ≥ pi}
where is Γmod={τ2,..., τn}.

Appropriate recurrence relation for Eq. (5) is:

)C(max
T
RC

T
RCR j)imod(hpjmodF

n
modi

)i(hpj
j

j

n
modi

i
1n

modi


























  (6)

Initial and ending conditions are the same as for Eq. (4).
Using Eq. (6) and algorithm for finding minimum TF we
realized application in MATLAB which can help us to
analyze timing constrains of one fault tolerant real-time
system.

We applied the realized application on the task set Case
IImod and the results are shown in the last column of Table
IV. It can be concluded that response time for τ1 is 40 time
units what is in accordance with our starting assumption.

Also, value for TFmod = 143 is less then TF = 275 what is good
for one RTS. If minimum time between two consecutive
faults, which real-time system can tolerate, is less then the
RTS is more faults tolerant. Because of that the modified
analysis gave us better result then original.

III. CONCLUSION

The modify RTA gave us more precise analysis results
which show us that RTS can tolerate more faults then
unmodified RTA was given. For the tasks set – case IImod
(Table IV) value for TF is reduced from 275 to 143 which is
improvement of 48%. So, the main contribute of our paper is
increasing number of faults which RTA considers during
analysis. Now, for all that faults modify RTA can guarantees
that RTS will be fault tolerant. Using modify RTA we get one
more fault tolerant RTS. The modify RTA can be used for
estimating the possibility of overcoming transient faults in one
process control real-time system i.e. it can be concluded how
much is one RTS fault tolerant.

ACKNOWLEDGEMENT

This paper is supported by Project Grant III44004 (2011-
2014) financed by Ministry of Education and Science,
Republic of Serbia

REFERENCES

[1] N. Nissanke, Realtime Systems, Prentice Hall, 1997.
[2] K. Juvva, “Real-Time Systems”, Carnegie Mellon University

18-849b Dependable Embedded Systems ili
http://www2.cs.cmu.edu/~koopman/des_s99/real_time/

[3] Nobuyasu Kanekawa, Eishi H. Ibe, Takashi Suga, Yutaka
Uematsu, Dependability in Electronic Systems: Mitigation of
Hardware Failures, Soft Errors, and Electro-Magnetic
Disturbances, Springer, 2010.

[4] S. Đošić, M. Jevtić, “Planiranje zadataka u sistemu za rad u
realnom vremenu sa redundansom u vremenu za prevazilaženje
otkaza”, Zbornik radova V simpozijuma industrijske
elektronike, INDEL 2004, Banja Luka, pp. 146-149, novembar
2004.

[5] S. Đošić, M. Jevtić, “Analysis of transient fault tolerance in hard
real-time systems with time redundancy”, Facta Universitatis,
Series: Automatic control and robotics, vol. 8, no 1, pp. 149-
163, 2009.

[6] M. George de A. Lima and Alan Burns, “An Optimal Fixed-
Priority Assignment Algorithm for Supporting Fault-Tolerant
Hard Real-Time Systems”, IEEE Trans. Computers, vol.52,
no.10, pp. 1332-1346, Oct. 2003.

[7] F. Cottet, J. Delacroix, Z. Mammeri, “Scheduling in Real-Time
Systems”, John Wiley & Sons, 2002.

