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  Abstract – An interactive evolutionary algorithm is proposed to 
solve multiple objective convex integer problems. The algorithm 
uses a heuristic for fast search, proposed to generate quickly a 
local approximate representative subset of the efficient frontier. 
Utility coefficients are calculated and used to support the 
Decision Maker (DM) to obtain a good reference point. A 
comparison with two other evolutionary algorithms for the same 
class optimization problems is done on an illustrative example.   
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I. INTRODUCTION 

Multiple objective convex integer optimization problem is 
considered in this paper. It can be stated in the following 
general form: 

Maximize   f(x) = [f1(x), f2(x), …, fk(x)]T        (1) 
subject to:  gj(x)  0,            j = 1,2,..., m; (2) 

    xi
(L) ≤ xi ≤ xi

(U),  i = 1,2,…, n; (3) 
    x  Zn,    (4) 

where gj(x), j = 1,2,…, m; are convex functions and fi(x), i = 
1,2,…, k; are concave nonlinear functions.  

In the text of the paper is used the term “solution” as a 
vector of variables and the term “point” as a corresponding 
vector of objectives. 

A solution x  Zn is a vector of n integer decision 
variables: x = (x1, x2 , …, xn)

T. The value xi
(L) is the known 

lower bound and the value xi
(U is correspondingly the upper 

bound of variable xi.  The solutions satisfying the constraints 
(2)-(4) constitute a feasible decision variable space V  Zn. 
The objective functions (1) constitute a k-dimensional space, 
called objective space F  Rk. For each solution x in the 
decision variable space, there exists a point f  Rk in the 
objective space, denoted by f(x) = f = (f1, f2, …, fk)

T. 
The problem (1-4) does not posses a unique optimal 

solution in the objective space. Instead that a conception of   
Pareto  optimality or non-domination is used (see [2], [4], 
[13], [16]). 

The domination between two solutions is defined as follows 
(see [2, 4, 13]): 

Definition 1. A solution x(1) is said to dominate the other 
solution x(2), if both the following conditions are true: 

1. The solution x(1)  is no worse(say the operator  
denotes worse and the operator denotes better) than x(2) in 
all objectives, or fj(x(1))  fj(x(2)) for j = 1,2,..., k;. 





2. The solution x(1)  is strictly better than x(2) in at least 

one objective, or fj(x(1))  fj(x(2)) for at least one j{1,2,..., k}.   
All points which are not dominated by any other point f  

F form the set of non-dominated points and the set of Pareto-
optimal solutions in the variable space respectively.  

There are two ideal goals in the multi-objective 
optimization: 

1. Find a set of solutions which are diverse enough to 
represent the entire range of the Pareto-optimal front, and 

2. Find a set of Pareto-optimal solutions, which satisfy 
in the best way the DM’s preferences. 

The interactive algorithms are the most popular in solving 
multi-objective optimization problems (see [14, 19]. They 
consist of two alternate phases: 1. Interaction (dialogue) with 
the DM and 2. Generating solutions. Usually an appropriate 
single objective convex integer optimization problem is 
solved during the second phase. Such problems belong to the 
class of NP-hard problems (see for example [6, 15]). There 
does not exist an exact algorithm, which can solve these 
problems in time depending polynomially on the problem 
input data length or on the problem size. For this reason many 
researchers investigate approximate algorithms with 
polynomial computational complexity, which solve such kind 
optimization problems. For the past 20 years evolutionary 
multiple objective optimization (EMOO) methodologies have 
demonstrated their usefulness in finding a set of near Pareto-
optimal solutions [2, 3, 5]. As a sequence many source codes 
– both commercial and free have been created and the EMOO 
algorithms obtained wide application.  

In principle the evolutionary optimization (EO) algorithms 
use a population-based approach, in which the iterations are 
performed on a set of solutions (called population) and more 
than one solution is generated at each iteration. The main 
positive features making popular the EO algorithms are the 
following: (i) They do not require any derivative information; 
(ii) EO algorithms are relatively simple to implement; (iii) EO 
algorithms are flexible and robust, i.e. they perform very well 
on a wide spectrum of problems (see [7]); The use of a 
population in EO algorithms has a number of advantages (see 
[2]): 1) it provides an EO procedure with a parallel processing 
power, 2) it allows EO procedures to find multiple optimal 
solutions, thereby facilitating the solution of multi-modal and 
multi-objective optimization problems, and 3) it provides an 
EO algorithm with the ability to normalize decision variables 
(as well as objective and constraint functions) within an 
evolving population using the best  minimum and maximum 
values in the population.  
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Some important disadvantages of EMOO algorithms are: (i) 
their convergence to the Pareto-optimal front could be slow 
and may require large number of iterations; (ii) they face 
difficulty in solving problems with a large number of 
objectives, i.e. they could obtain difficult a well representative 
set of Pareto-Optimal Solutions (see [5]). 

The number of objectives as a convergence factor is 
considered in [17]. Good approach in solving problems with 
large number of objectives is to use the EMOO methodologies 
to find a preferred and smaller set of Pareto-optimal solutions, 
instead of the entire front [5]. In this way the DM can 
concentrate to explore only the regions of Pareto-optimal 
front, which are of interest to her/him. An accelerating 
technique for population based algorithms is proposed in [8]. 
A technique for quickly moving the population to the Pareto-
optimal front is proposed in [9, 12]. Some hybrid EMOO 
algorithms have been recently proposed to overcome the 
second mentioned disadvantage (see [5, 11]). They expand the 
use of classical multi-objective optimization procedures (see 
[13]) like reference point-, reference direction- and other type 

methods, proposing new approaches and hybrid techniques.  
An interactive population-based (evolutionary) algorithm 

solving the problem (1)-(4) is proposed in this paper. To 
evaluate and arrange the solutions in the population is used 
the PROMETHEE method (see [1]). Utility coefficients like 
those proposed in [10] are calculated and used to support the 
DM in the choice of a reference point. The algorithm includes 
a heuristic procedure for quickly moving the whole population 
to the reference point, according the DM preferences. This 
procedure leads to better convergence of the search process to 
Pareto-optimal front. 

II. UTILITY COEFFICIENTS AND CHOICE OF 

REFERENCE POINT 

Let we have a population P of solutions in the variable 
space and let the size of P be p.  

The idea here is the algorithm to support the DM in his/her 
orientation where to search the desired compromise solution. 
The application of a scalarization process such as weighted 
sums or root mean square is excluded in [18] by the 
assumption that the different dimensions of the objectives fi(x) 
in (1) are not commensurable. To avoid this obstacle the 
algorithm uses utility coefficients ηi(x) for each objective fi(x), 
i=1,…,k; which are computed as follows: 

  ηi(x) = 
minmax

min

ii

ii

ff
ff



  (5) 

where fi max and fi min are correspondingly the maximal known 
and the minimal value for i-th objective. In case fi max = fi min 
the denominator of (5) is set to be 1. 

On the base of 10% of best members of P, arranged by 
means of special Gaussian generalized evaluation according 
the method PROMETHEE (see [1]), DM gives his preferences 
as utility coefficients for each objective fi(x), i =1,…,k;. Let 
they be ηr = (η1, η2, …, ηk)

T. Let the best and the worst 
solution among these 10% members of P are xb and xw. The 
direction z is calculated as follows: 

z = xb – xw  (6) 
Steps along z are done starting by xb and corresponding 

solutions, candidate to be chosen as reference solutions are 
generated:  x(1), x(2), … x(j). 

Then the vectors η(x) = (η1(x), η2(x), …, ηk(x))T for each x(1), 
x(2), …, x(j) are calculated. The Euclidean distance between 
those vectors and the preferred utility vector ηr is calculated:  

 

d j = 



k

i

r
i

j
i

1

2

)(    (7) 

The solution x(j), where d j becomes minimal is chosen as 
current reference solution xr and the corresponding point in 
the objective space becomes current reference point f r .  

III. A FAST SEARCH HEURISTIC PROCEDURE.  

The proposed algorithm uses a heuristic procedure to move 
quickly the whole population to the Pareto-optimal front. It 
consists of following steps: 

The weight center C of the solutions xi  P, for i = 1,…,p; 
is calculated. The components Ci of C are: 

          Ci = 
p

p

j

j
ix

1
, for i = 1,…,n;  (8) 

A direction in the variable space for moving the whole 
population to the reference solution is calculated: 

y = xr – C  (9) 
It is expected that the y vector is directed to the Pareto-

optimal front, because the solutions xb and xw are evaluated by 
means of the Gaussian generalized criterion [1]. Then we move 
the whole population with step y to the reference solution xr. 
In case xr is infeasible some members of the new population 
may become infeasible. In case x’ violates some constraint in 
the system (2)-(3) the corresponding feasible solution is 
calculated by using Golden section method for line search 
along the segment xx’ (where x is the corresponding starting 
solution) and by rounding the final x’ to an integer solution. 

IV. THE PROPOSED INTERACTIVE EVOLUTIONARY 

ALGORITHM 

The considered problem has a closed feasible domain 
because there are given lower and upper bounds for each 
variable (see constraints (3)). The Tchebycheff center of the 
feasible domain can be calculated and it can be rounded off to 
the closest integer feasible solution xch, called below rounded 
Tchebycheff center. There is also a possibility to use near 
Tchebycheff center xnch for the domain determined by the 
constraint system (3), but only if xnch is feasible for the 
domain determined by (2)-(3). 

By means of the fast search heuristic procedure the whole 
population is translated fast and close to the Pareto-optimal 
front.  
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Below is presented the general scheme of the new 
algorithm: 

Scheme of the algorithm  
Step 1. Set iteration counter h = 0. Around the 

Tchebycheff center xch of the feasible domain generate a 
number of p uniform distributed solutions’ vectors by using 
deviation of ±δ, where δ is a constant or % of corresponding 
component (for example δmax = ±5%). Use them to create the 
initial population Ph.  

Step 2. Evaluate the members of Ph using the Gaussian 
generalized criterion: 

    Fl(x(i)x(j)) = 1 – e , l = 1,…,k;      (10) )2/( 22 sd

where s = 2 and d = f l(x(i)) – f l(x(j)). 

π(x(i)x(j))= , for i,j = 1,…,p; and ij;      (11) 


k

l

ji
l xxF

1

)()( )(




p

iji

ij xx
1,

)()( )(Φ+(x(j)) = , j = 1,…,p;      (12) 

Arrange the solutions in Ph in descending order 
according their Φ+-values (Φ+(x(j)) for j = 1,…,p;).  

Step 3. Among the best 10% of members of Ph 
determine the best and the worst solution according their Φ+-
values. Let they are xb and xw. Then calculate direction z as 
shown in (6). 

Step 4. Calculate the utility vectors η(x) = (η1(x), η2(x), 
…, ηk(x))T for the best 10% of members of Ph. 

Step 5. Show the calculated utility vectors to DM and 
ask he/she to put his/her preferences in form of utility 
coefficients for each objective fi(x), i =1,…,k; Use these 
coefficients as components of the utility vector ηr. 

Step 6. Starting by xb make steps along z (calculated at 
Step 3.) and generate corresponding solutions, candidate to be 
chosen as reference solutions:  x(1), x(2), … x(j). 

Step 7. Calculate the utility vectors η(x) = (η1(x), η2(x), 
…, ηk(x))T for each x(1), x(2), …, x(j). 

Step 8. Calculate the Euclidean distance between those 
vectors and the preferred utility vector ηr. Choose the solution 
having minimal Euclidean distance to ηr as current reference 
solution xr and the corresponding point in the objective space 
as current reference point fr.  

 Step 9. Perform the heuristic procedure to move Ph 

towards the Pareto-optimal front: 
Calculate the weight center C of the solutions xi  Ph, 

for i = 1,…,p; (see (8)). Then calculate the vector y as shown 
in (9).  

Move the population with step size α along this 
direction:   {Pnew} = {Ph}   + α.y. The goal is the population 
Pnew to be located as close as possible to the Pareto-optimal 
front. 

Step 10.  Some solutions in the Pnew may be infeasible. 
For each infeasible solution in Pnew perform the Golden 
section   method  for  line  search  to  move  it  to   the  feasible 
region.  

Step 11. The DM evaluates all points in Pnew and if 
he/she is satisfied by one of them go to Step 12, otherwise set 
h = h+1, Ph = Pnew, and go to Step 2.  

Step 12. STOP. (End of the algorithm) 

V. ILLUSTRATIVE EXAMPLE 

The performance of presented algorithm is illustrated on the 
following test example: 

Max f(x) = [f1(x), f2(x)]T, 
f1(x) = x1;  f2(x) = x2; 

  subject to: 
x1

 + 3x2 – 150  0 
            0  x1

  120, 
            0  x2

  40, 
            x1, x2  – integer; 
The performance for this example for one iteration of the 

algorithm is presented on Fig. 1. 
 
Legend: 
 

+ –  initial  
       population P0 
□ – weight center  
       of P0 
* – solutions x(j) at  
      Step 6 
o – population  
      Pnew 
 

Fig.1. Result of algorithm after the first iteration 
 
At Step 1. Here is used the near Tchebycheff center xnch = 

(60, 20) because it is feasible solution. The following initial 
population P0 is created: x(1) = (66,23), x(2) = (53,17), x(3) = 
(58,24), x(4) = (55,19), x(5) = (62,18), x(6) = (65,14), x(7) = 
(63,21), x(8) = (54,25), x(9) = (59,23), x(10) = (64,15); 

At Step 2. The corresponding Φ+-values are: 12,76215; 
13,8756; 13,39125; 13,44787; 12,93763; 13,90183; 12,37131; 
14,69332; 12,2522; 12,99491; 

At Step 3. The best 10% of population are the solutions x(8) 
= (54,25) and x(6) = (65,14).  The direction z = (-11, 11). 

At Step 4. The minimal and maximal values for f1 are (0, 
120) and for f2 are (0, 40). The utility vectors for x(8) and x(6) 
are: η(x(8)) = (0.45; 0.625); η(x(6)) = (0.54; 0.35);  

At Step 5. The DM specifies as most preferable the utility 
vector ηr = (0.58; 0.75).  

At Step 6. Starting by x(8) = (54,25) the following solutions 
are generated along z: (43, 36), (32, 47), (21, 58), (10, 69) and 
(0, 79). 

At Step 8. The obtained reference solution xr = (32, 47). It 
coincides with the corresponding reference point fr.   

At Step 9. The weight center of P0 is C = (60, 19.9). The 
vector y = (-28, 27.1).  

At Step 10. The generated new population is Pnew = {(59, 
30), (30, 40), (48, 34), (36, 38), (45, 35), (44, 35), (51, 33), 
(44, 35), (48, 34), (44,35)}.  

At Step 11. The best obtained solutions are x(2) = (30,40) 
and x(1) = (59, 30).  The corresponding Φ+-values are: 
17,22825 and 28,27333. The solution arranged on third 
position is: x(4) = (36, 38) with Φ+-value 15,56581.  The utility 
vectors are: η(x(2)) = (0.25; 1); η(x(1)) = (0.492; 0.75); η(x(4)) = 
(0.3; 0.95); The DM chooses as compromise the solution x(1) = 
(59, 30) and terminates the calculations. 
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If DM wishes, she/he can perform a new iteration. In this 
case the algorithm continues by Step 2 and DM can specify 
new preferences in the form of utility coefficients. In this way 
DM could explore different parts of Pareto-optimal front. 

The solution of the above example by the method SPEA 
(see [4], [20]) is as follows: Initial population P0 is the same. 
External population is P1

ext = {(65, 27), (67, 20)}. After the 
first iteration the current population is P1= {(53, 17), (58, 24), 
(55, 19), (65, 27), (67, 20), (63, 21), (54, 25), (59, 23), (66, 
23), (58, 23)}. The best obtained solutions are: x(4) = (65,27), 
x(5) = (67,20) and x(8) = (66, 23).  The corresponding utility 
vectors are: η(x(4)) = (0.542; 0.675); η(x(5)) = (0.55; 0.575); 
η(x(8)) = (0.558; 0.5);  

It can be seen that SPEA generates dispersed sample along 
the whole Pareto-optimal front. 

The same example is solved by means of algorithm MGA, 
proposed in [10], starting with the same initial population P0. 
The following result is obtained: After the first iteration the 
current population is P1= {(66, 25), (65, 25), (66, 24), (65, 
24), (66, 23), (65, 23), (66, 21), (65, 21), (66, 19), (65, 19)}. 
The best obtained solutions are: x(1) = (66,25) and x(2) = (65, 
25).  The corresponding utility vectors are: η(x(1)) = (0.55; 
0.625);  η(x(2)) = (0.542; 0.625); 

Obviously the algorithm proposed here has better 
convergence to the Pareto-optimal front than the algorithms 
SPEA and MGA. 

VI. CONCLUSION 

The proposed algorithm is suitable to solve real-life large 
size multiple objective integer optimization problems. It has 
the following basic characteristics: 

 It is designed to find a preferred set of solutions 
instead of the entire Pareto-optimal set. 

 It can quickly converge to the desired part of 
Pareto-optimal front. 

 It is indifferent to the shape of Pareto-optimal 
front. 

 It is applicable to problems with large number of 
objectives and large number of variables. 

 It does not put great demands to the DM. 
 It is an interactive evolutionary method and could 

generate a number of solutions in the region of 
interest, so that the DM would be able to find 
without great efforts the satisfactory non-
dominated solution among them. 

The algorithm is realized as module in a web-based 
interactive system for multiple objective optimization. 
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