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Abstract – Convolution is an important operation in many 
areas of science and engineering, including systems theory, signal 
processing, pattern recognition, switching theory, and logic 
design. In particular, when dealing with binary encoded signals 
and systems, the dyadic convolution is used, i.e., the convolution 
on finite dyadic groups consisting of binary n-tuples equipped 
with the addition modulo 2.  Fast computation algorithms are 
essential for practical applicability of the dyadic convolution and 
algorithms based on it. These algorithms are defined by the 
application of the convolution theorem in the Walsh (Fourier) 
domain and then exploiting the Fast Fourier Transform (FFT).  

 
  In this paper, we present a method for accelerating the 

computation of the dyadic convolution through a parallel 
implementation of the related algorithm on a Graphics 
Processing Unit (GPU). The architecture of the GPU is massively 
parallel, fully programmable, and it offers tremendous 
computational power and memory bandwidth. In order to be 
efficiently implemented, the fast algorithm for the dyadic 
convolution has to be suitably reformulated and adapted to the 
GPU resources. We present a solution to this problem using the 
Open Computing Language (OpenCL). Further, we consider 
several issues concerning the efficient mapping of the algorithm 
to the GPU architecture. Performance of the proposed 
implementation is compared with the referent C/C++ 
implementation processed on the Central Processing Unit (CPU). 
Experimental results show that significant speedups are achieved 
by the application of the proposed GPU calculation method.   
 

Keywords – Dyadic convolution, Fast Walsh transform, GPU 
parallel programming, OpenCL. 

 

I. INTRODUCTION 

Convolution is a mathematical operation that expresses 
relationships between values of two signals (modeled by 
functions f and g) in points at a fixed distance. The 
convolution C = f g  of two functions f and g is a function 

that resembles any one of them, modified by the other one.     
The convolution operation has an important place in efficient 
solutions to many problems in engineering and mathematics 
which are of both practical and theoretical importance [8].  

When the finite dyadic group is used as an underlying 
algebraic structure on which the convolution operation is 
defined, we use the term dyadic (or logical or XOR) 
convolution (see Section 3 and also [4, 8, 9, 12]). Dyadic 
convolution coefficients can, in principle, be calculated by the 

brute force application of the equation that defines the 
operation (see Eq. (1) in Section 3). However, this method has 
exponential complexity in the number of inputs and is 
unfeasible in practice for large signals. Therefore, algorithms 
for the fast computation of convolution are derived by using 
the convolution theorem [8] on the corresponding algebraic 
structure.   

In this paper, we present a technique for an accelerated 
calculation of the dyadic convolution through a parallel 
implementation of the fast algorithm derived from the 
convolution theorem. Due to this theorem, computation of the 
dyadic convolution converts into performing two direct and an 
inverse Walsh transform, which can be done by the 
corresponding FFT-like algorithms, i.e., the Fast Walsh 
Transform – FWT [4, 5, 8].  

The proposed implementation is developed using the Open 
Computing Language (OpenCL) and processed in a highly 
parallel manner on a GPU. Experimental results and 
comparisons with the classical implementation confirm that 
the proposed method leads to significant computational 
speedups.   

The rest of this paper is organized as follows. After a 
discussion of the related work in Section 2, in Section 3 we 
give a short introduction to the dyadic convolution and the 
fast algorithm for its calculation. Section 4 is devoted to the 
mapping of the fast algorithm to the GPU architecture and the 
design of the corresponding OpenCL implementation. In 
Section 5, we describe the experimental environment that we 
used to evaluate the method, and present the experimental 
results that we recorded. Section 6 offers some conclusions 
drawn from the presented research. 

II. RELATED WORK 

The fast algorithm for the dyadic convolution is based on 
the application of the Walsh transform which is the Fourier 
transform on finite dyadic groups. The implementation of 
various Fast Fourier Transforms (FFTs) on different 
technological platforms is a widely considered topic, see for 
instance [4, 5, 6, 7] and references therein. The calculation of 
dyadic convolution on classical Central Processing Units 
(CPUs) through the application of the convolution theorem, 
both on vectors and decision diagrams, is presented in [9]. 
Reference [4] presents an application of the dyadic 
convolution for the fast multiplication of hyper-complex 
numbers. 

In recent years, the technique of performing General 
Purpose computations on the GPU (GPGPU) has proven to be 
a suitable approach in solving many computationally-
intensive tasks [2, 3, 6, 7, 10]. In particular, the GPU-
accelerated calculation of FFT algorithms using CUDA is 
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Fig. 1. Flow graph of the Cooley-Tukey FWT algorithm for N = 8 [6]. 

described in [7, 11]. Reference [6] presents an OpenCL 
implementation of the FWT that uses the GPU hardware and 
leads to significant speedups over traditional CPU processing. 

However, in our best knowledge, there are no papers 
discussing neither CUDA nor OpenCL GPU implementations 
of the fast algorithm for the calculation of dyadic convolution 
based on the convolution theorem. This fact, together with the 
intended applications of the dyadic convolution for particular 
problems in logic design [8], was the motivation for the 
research on the dyadic convolution calculation that is 
presented in this paper. 

III. DYADIC CONVOLUTION 

A. Dyadic convolution 

The finite dyadic group of order n is defined as 2 21

n
n

i
C


C  , 

where ,  stands for the addition modulo 2, 

and   is the direct (Cartesian) product.   
2 ({0,1}, }C   

For two functions f, g : , where is the field of 

rational numbers, the dyadic convolution, at a distance 
, is defined as: 

2
nC  

n



10,1,..., 2n 

 
2 1

0

C ( ) ( ) ( )f g
x

f g f x g x . 





                 (1) 

In binary notation, x is 1 2( , ,..., )nx x x x , and τ is 
1 2( , ,..., )n    , where , {0,1}i ix   . 

B. Walsh transform and fast Walsh transform 

The Walsh transform is defined by the Walsh matrix: 
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is the basic Walsh matrix. Since is a self-inverse matrix 

up to the scalar 2-n, the inverse Walsh transform is defined as: 
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It follows that both the direct and the inverse Walsh 
transforms can be computed using the same algorithm. 

The Walsh spectrum S f , h  = [Sf,h (0), Sf,h (1), … , Sf,h (2
n-1)]T 

of  a  function f : 2 , specified by the function vector    

 = [f (0),  f (1), …, f (2n-1)]T, is defined as: 

nC  
F
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The spectral coefficients appear in natural (Hadamard) 
ordering, which is indicated by the index h in . The 

function f is reconstructed from the Walsh spectrum as:  
,f hS

  (6) 1
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and (5) and (6) form the Walsh transform pair. 
The computation of the Walsh transform based on its 

definition (Eqs. (2) and (5)) is inefficient, since it expresses 
the O(N2) time complexity, where N = 2n is the size of the 
input vector. Fortunately, more efficient algorithms based on 
the FWT [4, 8], with the time complexity of O(NlogN), exist. 

The fast Walsh transform (FWT) can be defined using the 
following factorization: 
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The matrix defines the partial Walsh transform and 

corresponds to the i-th step of the FWT. The flow graph of the 
corresponding algorithm for N = 8 is given in Figure 1.  

( )
iw nC

C. Convolution theorem 

In the classical Fourier analysis, the convolution theorem 
states that the Fourier transform [4, 5, 8] of the convolution 
function C = f g  is the componentwise product of Fourier 

transforms of f and g. In other words, a rather complex 
convolution operation in the original domain converts into a 
simple componentwise multiplication in the spectral domain.  

In abstract harmonic analysis, the convolution theorem can 
be extended to the Fourier transform defined over locally 
compact Abelian groups [8]. For functions on the finite dyadic 
group , the calculation of the dyadic convolution through 

the application of the convolution theorem is done as follows: 
2
nC

  (9) 2 ( )(( ( ) )( ( ) ))n
f g n n n
  -1C W W F W G
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where  is the Walsh transform, is the inverse Walsh 
transform, and F and G are function vectors for f and g, 
respectively.  

W -1W

Therefore, an efficient algorithm for the computation of the 
dyadic convolution can be developed in terms of the FWT.  

IV. MAPPING OF THE ALGORITHM AND 

IMPLEMENTATION DETAILS 

The application of the convolution theorem, expressed in 
Eq. (9), leads to the following three-stage fast dyadic 
convolution calculation algorithm (shown in Figure 2): 

 

Step 1. Perform the FWT on f and g and compute their 
Walsh spectra Sf and Sg. 
Step 2. Perform the componentwise multiplication of the 
two spectra Sf and Sg. 

Step 3. Perform the inverse FWT over SfSgto obtain Cfg.  
    
Since multiplication is done very fast on modern CPUs, the 

key issue in creating an efficient implementation of the above 
algorithm is the development of the fast implementation of the 
FWT. In order to perform the algorithm steps with the FWT 
and inverse FWT, we developed a kernel containing an 
OpenCL in-place implementation of the Cooley-Tukey 
algorithm for the FWT [6, 8]. As in all FFT-like algorithms, 
steps of the algorithm are executed sequentially and 
parallelism is used only within the steps. Within each of the 
steps, N/2 threads are executed in parallel. This large number 
of threads helps in hiding the data access latency to the GPU 
global memory [2, 3]. Each thread reads two elements from 
the GPU buffer with indices op1 and op2 calculated as: 

     op1 ← thread_id mod step + 2×step×(thread_id/step), (10) 

 op2 ← op1 + step.      (11) 

Parameters thread_id and step are the global identifier of 
the thread and the identifier of the current step of the 
algorithm, respectively. All threads execute the elementary 
butterfly operation defined by the basic Walsh transform 

matrix and store the results back in the same locations in 

the GPU memory, as in other implementations of the in-place 
FWT algorithms. 

(1)W

The componentwise multiplication of vectors is also 
performed by the corresponding OpenCL kernel which is 
executed by N threads in parallel, with each thread 
multiplying the two corresponding elements of the input 
vectors.  

After the multiplication, the inverse FWT is performed with 
the same kernel that is used for the direct transform, followed 
by scaling with 2-n. The scaling is also performed in parallel 
through the execution of the corresponding OpenCL kernel. 

Before executing any of the kernels, both input vectors are 
transferred from the main memory to the GPU global 
memory. After the calculations, the resulting convolution 
coefficients are transferred back to the host. These memory 
operations take a significant share of the total GPU running 
times as reported in Section 5.   

V. EXPERIMENTAL ENVIRONMENT AND RESULTS 

The test platform used to perform the experiments is an HP 
Pavilion dv7-4060us notebook computer (see Table I). The 
OpenCL kernels are developed using MS Visual Studio 2010 
Ultimate and ATI APP SDK 2.3 [1]. ATI Stream Profiler 2.1 
is used for GPU kernel performance analysis, in accordance 
with instructions provided in [2]. The referent C/C++ source 
code is compiled for the x64 platform with the maximum 
level of performance-oriented optimizations.  

TABLE I TEST MACHINE SPECIFICATION 

CPU 
AMD Phenom II N830  
triple-core  (2.1GHz) 

RAM 4GB DDR3 
OS Windows 7 (64-bit) 
GPU 
- engine speed 
- global memory 
- compute units 
- processing elements 
- price 

ATI Mobility Radeon 5650  
650 MHz 
1 GB DDR3 800 MHz 
5 
400 
~ 100$ 

Algorithm 1 FAST CALCULATION OF DYADIC CONVOLUTION C  = f g  

1 Allocate buffers buffer1 and buffer2 in the global memory of the GPU device. 
2 Transfer input vectors f and g from the host CPU memory to GPU buffers buffer1 and buffer2, respectively. 
3 Perform the Walsh transform on vectors stored in buffer1 and buffer2 using the following in-place OpenCL 

implementation of the Cooley-Tukey algorithm for the FWT: 
a. For each step of the FWT, from step ← 0 to step ← (log2N) - 1, call the OpenCL kernel for the FWT with 

input parameters being the appropriate buffer in the GPU’s global memory and the value of the current step 
2step. The kernel is executed by N/2 threads in parallel on the GPU. Each thread reads two elements, 
determined by (10) and (11), from the buffer, performs the operations defined by the Walsh matrix  
and stores back the results in the same locations. 

(1)W

4 After computing the FWT of both vectors, execute the OpenCL kernel for the componentwise multiplication of the 
two Walsh spectra with N threads executed in parallel. The resulting vector is stored in buffer1.  

5 Perform the inverse FWT on buffer1 using the same kernel as for the FWT.  
6 Scale the contents of buffer1 with the factor 2-n using the OpenCL kernel with N threads executed in parallel. 
7 Transfer the contents of the GPU buffer buffer1, which holds the resulting dyadic convolution coefficients, back to 

the host CPU memory. 

Fig. 2. Algorithm for the fast calculation of dyadic convolution on the GPU. 
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As in all FFT implementations over vectors, the resulting 
performance is independent of the function values. Therefore, 
we perform the experiments using randomly generated binary 
vectors. We present the results for the GPU calculation time 
and, also, the time for transfer of data to/from the GPU which 
offers a more complete perspective to the reader. In order to 
explore the performance of the proposed method, we 
performed a comparative analysis with respect to the classical 
C/C++ implementation of the same algorithm processed on 
the CPU. 

TABLE II COMPUTATION TIMES FOR THE REFERENT CPU 

AND THE PROPOSED GPU IMPLEMENTATION 

Time [ms] 

GPU 

VI. CONCLUSIONS 

In this paper, we proposed a method for the fast calculation 
of dyadic convolution through an OpenCL parallel algorithm 
implementation which is processed on the GPU. We presented 
a comparative performance analysis of the proposed solution 
and the referent C/C++ implementation processed on a 
multicore CPU. A significant reduction of the calculation time 
is obtained due to an appropriate modification of the 
corresponding fast algorithm for the GPU implementation.  
Notice that, if f(x) = g(x), then the dyadic convolution 
becomes the cross-correlation of a function with itself and 
produces coefficients which are referred to as the 
autocorrelation coefficients [8]. It follows that the same 
OpenCL implementation that is proposed in this paper can 
also be used for the fast calculation of both the dyadic 
convolution and the autocorrelation. The proposed method 
could, therefore, extend the area of applications of these 
operations to problems where algorithm running time is an 
essential and, often, limiting factor, since it allows time-
efficient computations in systems theory, signal processing, 
pattern recognition, switching theory, and logic design.   

N 
CPU 

Computation 
time 

Memory 
time 

16 0 0 0 
256 0 0 1 

1 024 0 1 1 
65 536 15 3 2 

262 144 53 6 3 
1 048 576 108 24 9 
8 388 608 1201 220 45 

16 777 216 2512 469 86 
33 554 432 5002 998 147 

 N – Number of elements in the input vector 
 CPU - C/C++ implementation, processed on the CPU 
 GPU - OpenCL C implementation, processed on the GPU 
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