

Calculation of Dyadic Convolution Using Graphics
Processing Units and OpenCL

Dušan B. Gajić1 and Radomir S. Stanković1

Abstract – Convolution is an important operation in many
areas of science and engineering, including systems theory, signal
processing, pattern recognition, switching theory, and logic
design. In particular, when dealing with binary encoded signals
and systems, the dyadic convolution is used, i.e., the convolution
on finite dyadic groups consisting of binary n-tuples equipped
with the addition modulo 2. Fast computation algorithms are
essential for practical applicability of the dyadic convolution and
algorithms based on it. These algorithms are defined by the
application of the convolution theorem in the Walsh (Fourier)
domain and then exploiting the Fast Fourier Transform (FFT).

 In this paper, we present a method for accelerating the

computation of the dyadic convolution through a parallel
implementation of the related algorithm on a Graphics
Processing Unit (GPU). The architecture of the GPU is massively
parallel, fully programmable, and it offers tremendous
computational power and memory bandwidth. In order to be
efficiently implemented, the fast algorithm for the dyadic
convolution has to be suitably reformulated and adapted to the
GPU resources. We present a solution to this problem using the
Open Computing Language (OpenCL). Further, we consider
several issues concerning the efficient mapping of the algorithm
to the GPU architecture. Performance of the proposed
implementation is compared with the referent C/C++
implementation processed on the Central Processing Unit (CPU).
Experimental results show that significant speedups are achieved
by the application of the proposed GPU calculation method.

Keywords – Dyadic convolution, Fast Walsh transform, GPU
parallel programming, OpenCL.

I. INTRODUCTION

Convolution is a mathematical operation that expresses
relationships between values of two signals (modeled by
functions f and g) in points at a fixed distance. The
convolution C = f g of two functions f and g is a function

that resembles any one of them, modified by the other one.
The convolution operation has an important place in efficient
solutions to many problems in engineering and mathematics
which are of both practical and theoretical importance [8].

When the finite dyadic group is used as an underlying
algebraic structure on which the convolution operation is
defined, we use the term dyadic (or logical or XOR)
convolution (see Section 3 and also [4, 8, 9, 12]). Dyadic
convolution coefficients can, in principle, be calculated by the

brute force application of the equation that defines the
operation (see Eq. (1) in Section 3). However, this method has
exponential complexity in the number of inputs and is
unfeasible in practice for large signals. Therefore, algorithms
for the fast computation of convolution are derived by using
the convolution theorem [8] on the corresponding algebraic
structure.

In this paper, we present a technique for an accelerated
calculation of the dyadic convolution through a parallel
implementation of the fast algorithm derived from the
convolution theorem. Due to this theorem, computation of the
dyadic convolution converts into performing two direct and an
inverse Walsh transform, which can be done by the
corresponding FFT-like algorithms, i.e., the Fast Walsh
Transform – FWT [4, 5, 8].

The proposed implementation is developed using the Open
Computing Language (OpenCL) and processed in a highly
parallel manner on a GPU. Experimental results and
comparisons with the classical implementation confirm that
the proposed method leads to significant computational
speedups.

The rest of this paper is organized as follows. After a
discussion of the related work in Section 2, in Section 3 we
give a short introduction to the dyadic convolution and the
fast algorithm for its calculation. Section 4 is devoted to the
mapping of the fast algorithm to the GPU architecture and the
design of the corresponding OpenCL implementation. In
Section 5, we describe the experimental environment that we
used to evaluate the method, and present the experimental
results that we recorded. Section 6 offers some conclusions
drawn from the presented research.

II. RELATED WORK

The fast algorithm for the dyadic convolution is based on
the application of the Walsh transform which is the Fourier
transform on finite dyadic groups. The implementation of
various Fast Fourier Transforms (FFTs) on different
technological platforms is a widely considered topic, see for
instance [4, 5, 6, 7] and references therein. The calculation of
dyadic convolution on classical Central Processing Units
(CPUs) through the application of the convolution theorem,
both on vectors and decision diagrams, is presented in [9].
Reference [4] presents an application of the dyadic
convolution for the fast multiplication of hyper-complex
numbers.

In recent years, the technique of performing General
Purpose computations on the GPU (GPGPU) has proven to be
a suitable approach in solving many computationally-
intensive tasks [2, 3, 6, 7, 10]. In particular, the GPU-
accelerated calculation of FFT algorithms using CUDA is

1Dušan B. Gajić and Radomir S. Stanković are with the University
of Niš, Faculty of Electronic Engineering, Aleksandra Medvedeva
14, 18000 Niš, Serbia, E-mails: dusan.gajic@elfak.ni.ac.rs,
radomir.stankovic@gmail.com.

 429

Fig. 1. Flow graph of the Cooley-Tukey FWT algorithm for N = 8 [6].

described in [7, 11]. Reference [6] presents an OpenCL
implementation of the FWT that uses the GPU hardware and
leads to significant speedups over traditional CPU processing.

However, in our best knowledge, there are no papers
discussing neither CUDA nor OpenCL GPU implementations
of the fast algorithm for the calculation of dyadic convolution
based on the convolution theorem. This fact, together with the
intended applications of the dyadic convolution for particular
problems in logic design [8], was the motivation for the
research on the dyadic convolution calculation that is
presented in this paper.

III. DYADIC CONVOLUTION

A. Dyadic convolution

The finite dyadic group of order n is defined as 2 21

n
n

i
C

C ,

where , stands for the addition modulo 2,

and is the direct (Cartesian) product.
2 ({0,1}, }C

For two functions f, g : , where is the field of

rational numbers, the dyadic convolution, at a distance
, is defined as:

2
nC

n

10,1,..., 2n

2 1

0

C () () ()f g
x

f g f x g x .

 (1)

In binary notation, x is 1 2(, ,...,)nx x x x , and τ is
1 2(, ,...,)n , where , {0,1}i ix .

B. Walsh transform and fast Walsh transform

The Walsh transform is defined by the Walsh matrix:

 (2) 1
() (1),

n

i
n

 W W

where denotes the Kronecker product and

1 1
(1)

1 1

W

F

,

 (3)

is the basic Walsh matrix. Since is a self-inverse matrix

up to the scalar 2-n, the inverse Walsh transform is defined as:

()nW

 (4)
1() 2 ().nn n W W

It follows that both the direct and the inverse Walsh
transforms can be computed using the same algorithm.

The Walsh spectrum S f , h = [Sf,h (0), Sf,h (1), … , Sf,h (2
n-1)]T

of a function f : 2 , specified by the function vector

 = [f (0), f (1), …, f (2n-1)]T, is defined as:

nC
F

 (5) , () .f h nS W

The spectral coefficients appear in natural (Hadamard)
ordering, which is indicated by the index h in . The

function f is reconstructed from the Walsh spectrum as:
,f hS

 (6) 1
,2 ()n

f hn F W S

and (5) and (6) form the Walsh transform pair.
The computation of the Walsh transform based on its

definition (Eqs. (2) and (5)) is inefficient, since it expresses
the O(N2) time complexity, where N = 2n is the size of the
input vector. Fortunately, more efficient algorithms based on
the FWT [4, 8], with the time complexity of O(NlogN), exist.

The fast Walsh transform (FWT) can be defined using the
following factorization:

 (7)

1

() ()
i

n

w i
i

n n

W C

where

1

(1), ,
() (1), (1)

(1), .i i i

n
j j

w w wj

i j
n

i j

W
C C C

I
 (8)

The matrix defines the partial Walsh transform and

corresponds to the i-th step of the FWT. The flow graph of the
corresponding algorithm for N = 8 is given in Figure 1.

()
iw nC

C. Convolution theorem

In the classical Fourier analysis, the convolution theorem
states that the Fourier transform [4, 5, 8] of the convolution
function C = f g is the componentwise product of Fourier

transforms of f and g. In other words, a rather complex
convolution operation in the original domain converts into a
simple componentwise multiplication in the spectral domain.

In abstract harmonic analysis, the convolution theorem can
be extended to the Fourier transform defined over locally
compact Abelian groups [8]. For functions on the finite dyadic
group , the calculation of the dyadic convolution through

the application of the convolution theorem is done as follows:
2
nC

 (9) 2 ()((())(()))n
f g n n n
 -1C W W F W G

 430

where is the Walsh transform, is the inverse Walsh
transform, and F and G are function vectors for f and g,
respectively.

W -1W

Therefore, an efficient algorithm for the computation of the
dyadic convolution can be developed in terms of the FWT.

IV. MAPPING OF THE ALGORITHM AND

IMPLEMENTATION DETAILS

The application of the convolution theorem, expressed in
Eq. (9), leads to the following three-stage fast dyadic
convolution calculation algorithm (shown in Figure 2):

Step 1. Perform the FWT on f and g and compute their
Walsh spectra Sf and Sg.
Step 2. Perform the componentwise multiplication of the
two spectra Sf and Sg.

Step 3. Perform the inverse FWT over SfSgto obtain Cfg.

Since multiplication is done very fast on modern CPUs, the

key issue in creating an efficient implementation of the above
algorithm is the development of the fast implementation of the
FWT. In order to perform the algorithm steps with the FWT
and inverse FWT, we developed a kernel containing an
OpenCL in-place implementation of the Cooley-Tukey
algorithm for the FWT [6, 8]. As in all FFT-like algorithms,
steps of the algorithm are executed sequentially and
parallelism is used only within the steps. Within each of the
steps, N/2 threads are executed in parallel. This large number
of threads helps in hiding the data access latency to the GPU
global memory [2, 3]. Each thread reads two elements from
the GPU buffer with indices op1 and op2 calculated as:

 op1 ← thread_id mod step + 2×step×(thread_id/step), (10)

 op2 ← op1 + step. (11)

Parameters thread_id and step are the global identifier of
the thread and the identifier of the current step of the
algorithm, respectively. All threads execute the elementary
butterfly operation defined by the basic Walsh transform

matrix and store the results back in the same locations in

the GPU memory, as in other implementations of the in-place
FWT algorithms.

(1)W

The componentwise multiplication of vectors is also
performed by the corresponding OpenCL kernel which is
executed by N threads in parallel, with each thread
multiplying the two corresponding elements of the input
vectors.

After the multiplication, the inverse FWT is performed with
the same kernel that is used for the direct transform, followed
by scaling with 2-n. The scaling is also performed in parallel
through the execution of the corresponding OpenCL kernel.

Before executing any of the kernels, both input vectors are
transferred from the main memory to the GPU global
memory. After the calculations, the resulting convolution
coefficients are transferred back to the host. These memory
operations take a significant share of the total GPU running
times as reported in Section 5.

V. EXPERIMENTAL ENVIRONMENT AND RESULTS

The test platform used to perform the experiments is an HP
Pavilion dv7-4060us notebook computer (see Table I). The
OpenCL kernels are developed using MS Visual Studio 2010
Ultimate and ATI APP SDK 2.3 [1]. ATI Stream Profiler 2.1
is used for GPU kernel performance analysis, in accordance
with instructions provided in [2]. The referent C/C++ source
code is compiled for the x64 platform with the maximum
level of performance-oriented optimizations.

TABLE I TEST MACHINE SPECIFICATION

CPU
AMD Phenom II N830
triple-core (2.1GHz)

RAM 4GB DDR3
OS Windows 7 (64-bit)
GPU
- engine speed
- global memory
- compute units
- processing elements
- price

ATI Mobility Radeon 5650
650 MHz
1 GB DDR3 800 MHz
5
400
~ 100$

Algorithm 1 FAST CALCULATION OF DYADIC CONVOLUTION C = f g

1 Allocate buffers buffer1 and buffer2 in the global memory of the GPU device.
2 Transfer input vectors f and g from the host CPU memory to GPU buffers buffer1 and buffer2, respectively.
3 Perform the Walsh transform on vectors stored in buffer1 and buffer2 using the following in-place OpenCL

implementation of the Cooley-Tukey algorithm for the FWT:
a. For each step of the FWT, from step ← 0 to step ← (log2N) - 1, call the OpenCL kernel for the FWT with

input parameters being the appropriate buffer in the GPU’s global memory and the value of the current step
2step. The kernel is executed by N/2 threads in parallel on the GPU. Each thread reads two elements,
determined by (10) and (11), from the buffer, performs the operations defined by the Walsh matrix
and stores back the results in the same locations.

(1)W

4 After computing the FWT of both vectors, execute the OpenCL kernel for the componentwise multiplication of the
two Walsh spectra with N threads executed in parallel. The resulting vector is stored in buffer1.

5 Perform the inverse FWT on buffer1 using the same kernel as for the FWT.
6 Scale the contents of buffer1 with the factor 2-n using the OpenCL kernel with N threads executed in parallel.
7 Transfer the contents of the GPU buffer buffer1, which holds the resulting dyadic convolution coefficients, back to

the host CPU memory.

Fig. 2. Algorithm for the fast calculation of dyadic convolution on the GPU.

 431

 432

As in all FFT implementations over vectors, the resulting
performance is independent of the function values. Therefore,
we perform the experiments using randomly generated binary
vectors. We present the results for the GPU calculation time
and, also, the time for transfer of data to/from the GPU which
offers a more complete perspective to the reader. In order to
explore the performance of the proposed method, we
performed a comparative analysis with respect to the classical
C/C++ implementation of the same algorithm processed on
the CPU.

TABLE II COMPUTATION TIMES FOR THE REFERENT CPU

AND THE PROPOSED GPU IMPLEMENTATION

Time [ms]

GPU

VI. CONCLUSIONS

In this paper, we proposed a method for the fast calculation
of dyadic convolution through an OpenCL parallel algorithm
implementation which is processed on the GPU. We presented
a comparative performance analysis of the proposed solution
and the referent C/C++ implementation processed on a
multicore CPU. A significant reduction of the calculation time
is obtained due to an appropriate modification of the
corresponding fast algorithm for the GPU implementation.
Notice that, if f(x) = g(x), then the dyadic convolution
becomes the cross-correlation of a function with itself and
produces coefficients which are referred to as the
autocorrelation coefficients [8]. It follows that the same
OpenCL implementation that is proposed in this paper can
also be used for the fast calculation of both the dyadic
convolution and the autocorrelation. The proposed method
could, therefore, extend the area of applications of these
operations to problems where algorithm running time is an
essential and, often, limiting factor, since it allows time-
efficient computations in systems theory, signal processing,
pattern recognition, switching theory, and logic design.

N
CPU

Computation
time

Memory
time

16 0 0 0
256 0 0 1

1 024 0 1 1
65 536 15 3 2

262 144 53 6 3
1 048 576 108 24 9
8 388 608 1201 220 45

16 777 216 2512 469 86
33 554 432 5002 998 147

 N – Number of elements in the input vector
 CPU - C/C++ implementation, processed on the CPU
 GPU - OpenCL C implementation, processed on the GPU

REFERENCES

[1] AMD Accelerated Parallel Processing SDK,
http://developer.amd.com/gpu/amdappsdk, AMD Inc., website
last visited on 10/04/2011.

[2] ATI OpenCL Programming Guide, AMD Inc., 2010.
[3] T. M. Aamodt, ”Architecting graphics processors for non-

graphics compute acceleration,” in Proc. of the 2009 IEEE
Pacific Rim Conf. on Communications, Computers and Signal
Processing, Victoria, BC, Canada, August 23-26, 2009.

The results of the experiments are presented in Table II and
Figure 3. The OpenCL implementation processed on an
inexpensive commodity GPU (see Table I) clearly
outperforms the referent CPU implementation, by a factor of
up to 5.5 when only calculation times are compared, and by
a factor of up to 4.5 when total times, including memory
transfers to/from GPU, are taken into account. The processing
of the very same kernels on a more powerful GPU would
directly lead to much larger speedups, which would not be the
case if a more powerful CPU was used for processing the
referent C/C++ implementation [3, 6].

[4] J. Arndt, Matters Computational: Ideas, Algorithms, Source
Code, Springer, 2010.

[5] J. W. Cooley and J. W. Tukey, ”An algorithm for the machine
calculation of complex Fourier series”, Mathematics of
Computation, No. 90, 1965, 297-301.

[6] D. B. Gajić and R. S. Stanković, “Computing fast spectral
transforms on graphics processing units using OpenCL,” in
Proc. of the Reed-Muller 2011 Workshop, Tuusula, Finland,
May 25-26, 2011, 27-36.

[7] N. K. Govindaraju et al., ”High performance discrete Fourier
transforms on graphics processors,” in Proc. of the 2008
ACM/IEEE Conf. on Supercomputing, IEEE Press, Austin,
Texas, USA, November 15-21, 2008.

Fig. 3. Computation times for the referent (CPU) and the proposed

(GPU) implementation.

[8] M. G. Karpovsky, R. S. Stanković, and J. T. Astola, Spectral
Logic and Its Applications for the Design of Digital Devices,
Wiley-Interscience, 2008.

[9] M. M. Radmanović, “Calculation of dyadic convolution through
binary decision diagrams,” Facta Universitatis: Series:
Automatic Control and Robotics, Vol. 8, No. 1, 2009, 89 – 97.

[10] NVidia CUDA: Compute Unified Device Architecture,
http://developer.nvidia.com/object/gpucomputing.html,
NVIDIA Corp., website last visited on 30/03/2011.

[11] NVidia CUDA CUFFT Library, NVIDIA Corp., 2007.
[12] R. S. Stanković, M. Bhattacharaya, and J. T. Astola,

“Calculation of dyadic autocorrelation through decision
diagrams,” in Proc. of the European Conference on Circuit
Theory and Design, August 2001, 337-340.

[13] The OpenCL Specification 1.1, Khronos OpenCL Working
Group, 2010.

