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Abstract – An output multiplicative representation of 

uncertainties in the synchronous generator unit model is 
discussed for the purposes of the stability analysis of the 
electromechanical modes under small disturbances. A study is 
carried out analyzing the influence of the choice of nominal 
model and calculation algorithms over the weight functions. 
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I. INTRODUCTION 

The electric power system (EPS) analysis under small 
disturbances is based on a mathematical description linearized 
around a certain operating point. In fact the operating point 
depends on a number of factors and is dynamic in time. This 
is why the linearized model should be treated as uncertain 
model. Another source of uncertainties is the inaccurate 
information about the schematic parameters of the elements of 
EPS. When the source of uncertainties is known, a common 
practice is to use structured representation of the uncertainties 
[1-3]. This approach was used in [4] and was shown that it is 
not applicable for modeling EPS because of the very high 
order of the obtained model. This is why it is appropriate to 
represent the uncertainty of the system as unstructured. Main 
problem with this method is the determination of adequate 
weight functions that properly describe the uncertainty effect 
in the model. In most books this problem is not treated 
thoroughly for MIMO systems and even less for the case of 
EPS. 

When the sources of uncertainty are known, usually the 
unstructured uncertainty weight functions are determined 
from the bounds of the frequency responses of the family of 
models built under the conditions of different combinations of 
values of the uncertain quantities amongst their range of 
variation. The ranges of the schematic parameters are 
relatively small in comparison with the variation of the regime 
parameters (caused by the change of the operating point) and 
this is why the latter have bigger influence. The purpose of 
this paper is to share the experience with calculation of 
appropriate unstructured uncertainty weight functions for 
representation of the operation point changes. 

II. TEST MODEL 

 
 
Fig. 1. Structural scheme of the model of single machine infinite bus 

system with multiplicative output uncertainty and AVR and PSS 

In Fig. 1 is shown the structural scheme of the model of 
single machine infinite bus (SMIB) system (GEPS,nom(s)). The 
generator is equipped with AVR (KAVR(s)) and PSS (KPSS(s)). 
The uncertainty is presented as output multiplicative 
unstructured, having matrix transfer weight function Wm(s). 
The generator parameters are Xd=1.6 p.u., Xq=1.6  p.u.; 
Xσ=0.15 p.u., Xd’=0.266 p.u., Xd”=0.205 p.u., Xq”= 
0.205 p.u., Td0=5.8 s, Td0”=0.13, Tq0”=0.13 s, TJ=6.3 s. The 
connecting power line has resistance XTW=0.5 p.u. The AVR is 
type UNITROL F and the PSS is type PSS2A. 

In the studied SMIB system, the independently changing 
regime parameters (i.e. changed by external for the system 
signals) are: the AVR reference ΔUref , voltage of the 
generalized system ΔUs , and turbine power ΔPmech. Their 
allowable ranges of change are approximately 
ΔUref=1÷1.05 p.u., ΔUs=0.95÷1.05 p.u. and ΔPmech= 
0.2÷0.85 p.u. (for steam turbine, with Pbase = SG.nom). 

The analysis in the paper is done based on the condition 
that the weight functions are calculated in respect to the 
family of models, generated by the change only of the turbine 
power in a certain range (0.4÷0.8 p.u.). The step of change of 
ΔPmech is 0.025 p.u. and is small enough so that there is the 
confidence that no specific situations are missed. In Fig. 2 are 
shown the frequency responses of the family open systems 
GEPS , and in Fig. 3 – the frequency responses of the family of 
systems closed with AVR and PSS (see Fig. 1). It is 
interesting to notice how the introduction of AVR and PSS 
completely changed the behavior of the generator unit. 

One should always keep in mind what will be the purpose 
of the uncertain model he is constructing. In this paper the 
purpose of the model is to validate that the introduction of 
unstructured uncertainty represents adequately the real family 
of models for a range of possible operating point and to check 
if it gives proper assessment of the robust stability of the 
system. Also, the other purpose is to check the robust stability 
when certain AVR and PSS are introduced into the model and 
to be able to compare the robustness of the system for other 
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AVR and/or PSS. Having this in mind, the weight functions 
are calculated in respect to the outputs of the generator itself. 
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Fig. 2. Frequency response of family open systems GEPS 

for Pmech in the range 0.4÷0.8 p.u. 
(1 – nominal model for Pmech = 0.6 p.u.) 
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Fig. 3. Frequency response of family closed with AVR and PSS 
systems, for Pmech in the range 0.4÷0.8 p.u. 

(1 – nominal model for Pmech = 0.6 p.u.) 

But if one wants for example to synthesize a PSS, the 
approach to constructing the model should be different. First 
uncertainty should be introduced only in the channel of the 
AVR. Its weight function should be calculated, of course, in 
respect to that channel of the open system (because after all 
the AVR is fixed and its purpose is to cope with the 
uncertainties). Only then the AVR is introduced and this way 
the uncertainty of this channel is “trapped” in the AVR 
feedback channel. As seen in Fig. 3, the other channels, which 
the PSS is going to use, change their behavior significantly 
and this is the uncertainty that the synthesized PSS should 
deal with. This is why the weight functions of the 
uncertainties in the channel, which the PSS is going to use, 
should be calculated in respect to the system closed with the 
AVR. Only then the uncertainties will be presented correctly 
for the purpose of synthesis of robust PSS. 

An illustration of the above said are the step responses of 
the family open systems GEPS (Fig. 4) and of the family closed 
with AVR and PSS systems (Fig. 5). It is interesting how 
despite the wide range of deviation of Pmech , the outputs 
closed system vary very little. 
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Fig. 4. Step response of family open systems GEPS 

for Pmech in the range 0.4÷0.8 p.u. 
(1 – nominal model for Pmech = 0.6 p.u.) 
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Fig. 5. Step response of family closed with AVR and PSS systems, 
for Pmech in the range 0.4÷0.8 p.u. 

(1 – nominal model for Pmech = 0.6 p.u.) 

III. CASE STUDY 

A. Choice of nominal model 

In this paper is analyzed the influence of different 
preconditions on the selection of appropriate weight functions. 
First the effect of the choice of nominal model is studied. 
Three distinct cases were considered – for nominal was 
chosen the model corresponding to an operating point, 
determined by Pmech at the upper limit of its supposed 
deviation range (Pmech,1 = 0.8 p.u.), at the middle of the range 
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(Pmech,2 = 0.6 p.u.) and at the lower limit (Pmech,3 = 0.4 p.u.). 
The weight functions were calculated according to the well-
known expression [1,2] separately for each input-output 
channel, based on the boundaries of the frequency responses 
of the family generated models, i.e. 
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where indexes p and k represent the outputs and the inputs of 
the system, G represents the family of generator’s models, 
obtained by the change of Pmech in the range 0.4÷0.8 p.u. An 
interpretation of that expression is that holds the biggest 

relative (to the particular nominal model) variations of G over 
the frequencies. In Fig. 6 are shown the weight functions for 
the three different cases of choice of nominal model. 

,P KmW
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Fig. 6. Weight functions (for each input/output channel) 

in respect to nominal model for: 
1 – Pmech,1 = 0.8 p.u.; 2 – Pmech,2 = 0.6 p.u.; 3 – Pmech,3 = 0.4 p.u. 

 
In the course of generation of the family of models was 

validated that all open systems GEPS , together with the closed 
with AVR and PSS systems are stable. It should be mentioned 
here that GEPS has the particularity that its output do not 
change independently. In order to account this feature, when 
building the uncertainty matrix Δ , one and the same 
uncertainty block was placed in the main diagonal of the 
matrix, instead of using different and independently varying 
uncertainty blocks for each output. 

After the formation of the uncertainty models for the 
different cases of choice of nominal model, the system was 
closed with the AVR and PSS and its robust stability was 
checked with MATLAB function robuststab. 

The results in Table I clearly show that choice of the 
nominal model on the limit values of the independently 
varying parameter leads to more pessimistic assessments of 
the structured singular value μ and respectively of the robust 
stability. Even more – in the case of nominal model 
corresponding to the lower limit of Pmech , the uncertain 
system was assessed as robustly unstable and this is 
misleading. 

TABLE I. ROBUST STABILITY FOR DIFFERENT 
CHOICES OF NOMINAL MODEL 

Nominal mode of 
 the uncertain  
system for the 
case of: 

Robustly 
stable 

uncertain 
system? 

Maximal 
value of 

upper limit
of μ 

Pmech,1 = 0.8 p.u. Yes 0.7524 

Pmech,2 = 0.6 p.u. Yes 0.6674 

Pmech,3 = 0.4 p.u. NO 1.973 

 
These results are basis to recommend the choice of the 

nominal model for the uncertain system to correspond to value 
of the varying parameter in the middle of their range instead 
of the actual nominal operating point of the generator. This is 
why the rest of the study is carried with nominal model 
corresponding to Pmech=0.6 p.u. 

B. Shape of the weight function 

The second aspect of the study is the comparison the 
possibility to represent the uncertainty with different weight 
functions for each input-output channel or with one and the 
same for all input-output channels. Two cases for formulation 
of single weight function are considered. The first one is 
based on the maximal relative deviation of the maximal 
singular value of the family of generated models in respect to 
the maximal singular value of the nominal model, i.e. 

    , ,( ) ( ) ( ) ( )m EPS nom EPS nomW j G j G j G j       .  (2) 
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Fig. 7. Calculated weight functions: 

1 – single function, common for all input/output channel,  
calculated by makeweight;  2 – single function, common for all 

input/output channel, calculated by maximal sigma of the system; 
3 – three separate functions (by one for each input/output channel) 

The second case is based on the MATLAB function 
makeweight, often used in the literature. It has the following 
syntax G = makeweight(dc, crossw, hf) and creates a stable, 1st-
order continuous time state-space system G such that the 
frequency response of G satisfies G(j*0) = dc, 
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|G(j*crossw)| = 1, and G(j*∞) = hf. It must be that 
|DC| < 1 < |HF|, or |HF|  < 1 < |DC|. 
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It is calculated in such a way that it encloses the weight 
function calculated by the maximal singular values. All 
different weight functions are shown in Fig. 7. 

Table II shows the robust stability analysis for the different 
choices of weight functions. It is obvious that makeweight 
generates a weight function which with its shape is 
inappropriate for the problem of uncertainties in an EPS. 

TABLE II. ROBUST STABILITY FOR DIFFERENT 
CHOICES OF WEIGHT FUNCTIONS 

Case of choice of weight 
function: 

Robustly 
stable 

uncertain 
system? 

Maximal 
value of 

upper limit
of μ 

3 separate weight functions Yes 0.6674 

1 weight function for all 
input/output channels, 
calculated by maximal 
sigma of the system 

Yes 0.5915 

1 weight function for all 
input/output channels, 
calculated by makeweight 

NO 1.021 

Fig. 9. Worst case gains by frequency points  
of the closed with AVR and PSS system: 

1 – with single weight function, common for all input/output 
channel; 2 – with three separate weight functions (by one for each 
input/output channel); 3 – the limits of the family of real models; 

IV. CONCLUSION 

Having specified a range of change of the independent 
regime parameters of EPS, it is appropriate to choose the 
nominal system to correspond to an operating point in the 
middle of the variation ranges.  

The MATLAB function wcgain was used to calculate (for 
each frequency point) the worst gains on the input-output 
channels for the 3 separate and 1 common weight functions 
and was compared with the worst gains of the family of 
models corresponding to real systems with operating points of 
Pmech in the range 0.4÷0.8 p.u. The results are shown in Figs. 8 
and 9. It is clearly seen that both cases enclose the reactions of 
the real systems meaning the they are both good 
representation of the family of real models. 

The weight functions for modeling unstructured output 
multiplicative uncertainty should represent the character of the 
frequency responses of the channels because in the general 
case there is more than one resonant frequency caused by the 
interaction of electrical and mechanical processes in EPS. In 
this sense the use of the MATLAB function makeweight for 
generation of weight function is not appropriate for modeling 
uncertainties in EPS. 
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Fig. 8. Worst case gains by frequency points  
of the open system GEPS: 

1 – with single weight function, common for all input/output 
channel; 2 – with three separate weight functions (by one for each 
input/output channel); 3 – the limits of the family of real models; 


