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Abstract – The paper presents calculation of the attraction 
force between ring permanent magnet of trapezoidal cross 
section and infinite linear magnetic plane using distribution of 
Ampere’s currents and discretization. The results obtained using 
the analytical method and discretization are compared with ones 
calculated numerically using FEMM software. 
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I. INTRODUCTION 

Permanent magnets of various shapes are often utilized in 
magnetic actuators, sensors or releasable magnetic fasteners. 
Knowledge of the magnetic force, either levitation or 
attraction, is required to control devices reliably. The 
attraction force between ring permanent magnet and infinite 
linear magnetic plane of permeability , presented in Fig. 1, 

is derived using the analytical method based on surface 
Ampere’s current distribution and discretization. Attraction 
force depends on the magnetic properties of permanent mag-
net (permanent magnetization M), permeability μ, on the 
distance between magnet and plane h, and on the geometrical 
design of the magnet [5].  

rμ

 
Fig. 1. Permanent magnet and infinite linear magnetic plane. 

There are numerous techniques for analyzing permanent 
magnet devices and different approaches for determining 
attraction or levitation forces between magnets [1]-[4]. Many 
authors proposed simplified and robust formulations of the 

magnetic field components created by ring permanent 
magnets. Moreover, the evaluation of the magnetic field 
created by ring magnets is the step that can help calculating 
the force. Indeed, the force is the value of importance for the 
design and optimization of a bearing. In [2] permanent 
magnets are modeled as distributions of equivalent magnetic 
charge and the levitation forces are determined by computing 
the force between the two charge distributions. Attraction 
force between permanent magnets in [1] is established by 
magnetostatic interaction. In this paper the attraction force is 
derived using the analytical method based on surface 
Ampere’s current distribution and discretization.  

II. PROCEDURE FOR ATTRACTION FORCE 

CALCULATION 

For solving this problem the image theorem in the plane 
mirror is used. The treated system can be replaced with 
system presented in the Fig 2. where 

 1μ

1μ
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 It is assumed that the magnetization is uniform throughout 
the magnet and it is  

 zMˆ1  MM ,  (2) 

and for the image  zMˆ2  MM . (3) 
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Due to uniform axial magnetization of the magnet and image, 
the volume density of the Ampere's currents is  

 0curla  MJ . (4) 

Only the surface Ampere’s current, with density  

 n̂sa  MJ  , (5) 
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(where  is unite vector of outgoing normal), exists on the 
inner and outer torus covers, in angular direction and the 
permanent magnet and its image behave as a thin, single layer, 
uniformly winded solenoid coils.  

n̂

The goal of this approach is to determine analytically the 
magnetic flux density generated by the image in any point and 
then to calculate the force on the magnet. In order to determi-
ne the magnetic flux density produced by the lower permanent 
magnet, the circular current loop C is considered (Fig.3).  

 
Fig. 3. The circular current loop. 

In [3] the final form of the magnetic flux density components 
generated by circular current loop are obtained as: 
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Using the results that are obtained for the circular loop the 
magnetic flux density generated by the image could be 
determined in any point. The idea is to discretize each magnet 
cover into system of segments (circular loops) where N is the 
number of segments. Considering Fig. 2 it is obvious that the 
following formulas are satisfied:   

01̂  nM , , sa2ˆ JM  n 0ˆ3  nM , sa4ˆ JM  n .  (8) 

Since only the surface Ampere’s currents, with density 
, exists on the inner and outer magnet covers, the to-

tal magnetic flux density produced by the lower magnet can 
be determined by summing the contribution of both magnet 
covers. 

MJ sa

By taking into account the magnet geometry, from Fig. 2, 
the following parameters can be defined 
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and the current of each circular loop of radius  is nr

 

  sinlMIn ,     . (13) Nn ,,1

 The magnetic force that acts on the one segment of upper 
magnet, that is circular loop of radius  or radius , due to 

the magnetic field generated by lower magnet, can be 
expressed as

 

ir c

 BlF  dd iI , (14) 

where current of the circular loop  is 

 )sin( lMIi   (15) 

and                     )( hz
L
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Since , using following relations θ̂dθd irl

yx ˆ)cos(ˆ)sin(ˆ   , 

yxr ˆ)sin(ˆ)cos(ˆ    and 

 zz ˆˆ  , (17) 

from Eq. (14) the magnetic force is finally obtained as 
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The z  component of this force represents the attraction 
force that acts on the one magnet’s segment 

 dθd riiz BrIF  .  (19) 

The x and y components of the force are equal to zero. 
Therefore, the attraction force of the one magnet’s segment, 
can be obtained using Eqs. (19) and (15) as 

 )sin(2  lMBrF riiz  .          (20) 

Contributions of inner and outer cover of both magnets 
must be included:
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Finally the total attraction force between ring permanent 
magnet and plane can be calculated easily and it is valid for 
any distance between magnet and plane
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III. NUMERICAL RESULTS 

The results of the presented approach are given in the 
graphical form and they are compared with ones calculated 
numerically using FEMM software.  

Table I presents the attraction force calculated when dimen-
sions of the magnet are: mm,2mm,4mm,3  cba  

mm1L , magnetization mAk900M  and relative perme-

ability of the  plane  when the number of segments of 

each magnet’s cover is . Results of FEMM 4.2 
software are obtained for 1.7 million elements. Difference bet-
ween presented approach and FEMM is greater as the distance 
is smaller. That difference lowers when the separation dista-
nce, h, increases. Fig. 4 shows normalized attraction force de-
pendency versus outer radius of the circular bottom of the 
magnet for various separation distance, when    

3

100N
r 

.3μr 
 
 
 
 

TABLE I 
ATTRACTION FORCE FOR DIFFERENT SEPARATION DISTANCE. 

 
[mm]h  [N]femm

zF  [N]zF  

0.5 -0.550230 -0.549755 

0.6 -0.438152 -0.437758 
0.7 -0.353875 -0.353520 

0.8 -0.289550 -0.289242 

0.9 -0.239870 -0.239567 
1.0 -0.201039 -0.200721 

1.1 -0.170331 -0.170000 

1.2 -0.145767 -0.145441 
1.3 -0.125960 -0.125599 

1.4 -0.109783 -0.109402 

1.5 -0.096491 -0.096049 

 
Fig. 4. Attraction force versus outer radius of a circular bottom  

of the magnet. 

 
Fig.5. Attraction force versus separation distance. 

In Fig.5 normalized attraction force versus separation 
distance is presented when relative permeability of plane is 

. Figs. 6 and 7 present distribution of magnetic flux 

density and distribution of magnetic field, respectively. They 
are obtained using semi-analytical method when the radii of 
circular top and circular bottom are equal 

10μr 

mm,3 ba  

mm,1c mm1L and separation distance .mm1h  
When the inner radius of magnet is equal to zero, 0c , 

the system is composed of truncated cone shaped permanent 
magnet and infinity plane. Fig.9 presents attraction force 
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versus separation distance when  while Fig.8 shows 

attraction force dependency versus relative permeability.  

50μr 

 

Fig.9. Attraction force versus relative permeability. 

IV. CONCLUSION  
Fig. 6. Distribution of magnetic flux density. 

The derived algorithm for attraction force calculation bet-
ween ring permanent magnet and infinite magnetic plane is 
easily implemented in any standard computer environment 
and it enables rapid parametric studies of the force. The result-
ing expression is given in terms of elementary functions that 
are available in all programming languages. The results of the 
presented approach are successfully confirmed using FEMM 
4.2 software. Attraction force calculation using presented app-
roach for mentioned parameters and is performed 
with Intel Core 2 Duo CPU at 2.4GHz and 2GB RAM memo-
ry and it took ten seconds of run time. The force is also deter-
mined on the same computer using FEMM 4.2 software and 
the computation time was 14 minutes. Therefore the advanta-
ge of presented approach is its simplicity and time efficiency. 

100N
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