

A Software Solution for Data Compression Using the
Prefix Encoding

Student authors: Ilija J. Urošević1 and Dejan Ž. Jevtić1
Mentors: Radomir S. Stanković2 and Dušan B. Gajić2

Abstract – Prefix encoding is one of the basic coding systems
that use the prefix property. Various applications of the prefix
encoding are in use today, e.g. country calling codes, UTF-8
system for encoding Unicode characters, the Secondary
Synchronization codes used in the UMTS W-CDMA 3G Wireless
standard. In this paper, we first present theoretical bases of
prefix encoding and some of the elementary types of prefix
coding techniques. Afterwards, we discuss the software
implementation of these coding algorithms realized in C#
programming language. Experimental results considering data
compression ratio and time needed for the compression are also
included. The application is primarily developed with
educational purposes in mind.

Keywords – Data compression, C# application, prefix
encoding.

I. INTRODUCTION

Data compression methods are very important in computer
science for many reasons, including faster time for data
transmission that they allow, and more free space on storage
disks. There are many compression methods developed for
this purposes.

This paper first describes prefix encoding as one of the
basic coding systems and presents the theoretical bases of the
prefix coding and some types of prefix codes, described in
Sections 2 and 3, respectively. Next, in Section 4 we present a
software solution for data compression using the prefix
encoding, realized in C# programming language, along with
the experimental results representing data compression ratio
and time of compression. This application is mainly
developed for educational purposes.

II. PREFIX CODES

In this Section, we use references [1] and [4]. Prefix
encoding is one of the basic and most common coding
systems. Prefix code is a variable-type code which satisfies

the prefix property. The prefix property requires that once a
certain bit pattern has been assigned as the code of a symbol,
no other valid code words should start with that pattern (the
pattern cannot be prefix of any other code word). For instance,
we will define two codes: code-1 with following code words:
{1, 01, 010, 001}, and code-2 with code words: {1, 01, 000,
001}. In this case, code-1 does not satisfy the prefix property
because code word 010 begins with 01, which is also valid
code word in code-1. On the other hand, code-2 does not have
an issue with this property, and therefore it satisfies the prefix
property. Coding systems with the prefix property can be
transmitted with a sequence of code words without any
symbol for dividing individual words. If a code does not
satisfy the prefix property, situation mentioned above can lead
to ambiguous codes. We will demonstrate this with one
simple example. Let us define symbols a1, a2, a3 and a4
which we will assign to code-1 and code-2, as shown in Table
I:

TABLE I
EXAMPLE OF CODES WITH PREFIX PROPERTY

Symbol Code-1 Code-2
a1 1 1
a2 01 01
a3 010 000
a4 001 001

We will now code the following sequence of symbols: a1,

a3, a2, a1, a4. Code-1 will decode this sequence as
1|010|01|1|001 (without vertical bars). However, this code can
be decoded wrongly because of the lack of the prefix property.
The decoder doesn’t know whether to decode the sequence as
1|010|01… (which is a1, a3, a2,…) or as 1|01|001… (which is
a1, a2, a4,…). From this example we can conclude that code-1
is ambiguous. Code-2 has the prefix property and it can be
decoded unambiguously.

There are many algorithms which are based on the prefix
encoding. Two most well known are the Shannon-Fano
method and the Huffman method. Prefix encoding is good
solution in situations when we want to code integers because
the binary representation of integers does not satisfy the prefix
property and size of the set of integers must be known in
advance. With prefix encoding we don’t have to know size of
the set of integers in advance which is required in some
applications. There are lot of variations of the prefix codes,
and we will describe some of them in the next Section.

Student authors:
1Ilija J. Urošević and Dejan Ž. Jevtić are with the Faculty of

Electronic Engineering, Aleksandra Medvedeva 14, 18000 Niš,
Serbia, E-mails: kieknai@elfak.rs and dejanjevtic@elfak.rs.

Mentors:
1Radomir S. Stanković and Dušan B. Gajić are with the

Computational Intelligence and Information Technology Laboratory,
Department of Computer Science, Faculty of Electronic Engineering,
Aleksandra Medvedeva 14, 18000 Niš, Serbia, E-mails:
radomir.stankovic@elfak.ni.ac.rs and dusan.gajic@elfak.ni.ac.rs.

497

III. TYPES OF PREFIX CODES

We based this section mostly on reference [1]. First, we
will present the Unary Code. The Unary Code is operating
with non-negative integers, and the code of the integer n is
defined as n - 1 ones, followed by one zero. There is also an
alternative version of this code. With the alternative version,
integer n is defined as n - 1 zeros, followed by single one.
Unary codes are very easy to work with, but disadvantage of
these codes is very large size for large numbers, which is not
the good solution for compression of integers. Some Unary
Codes are represented in Table II.

TABLE II
UNARY CODES

n Code Alt. Code
1 0 1
2 10 01
3 110 001
4 1110 0001
5 11110 00001

It is also possible to define general unary codes, also known

as start-step-stop codes. This code consists of a triplet (start,
step, stop) of integer parameters, and code words are created
with the following procedure: nth code word consists of n
ones, followed by one zero, followed by all the combinations
of a bits where a = start + n*step. If a = stop, then the single
zero preceding a bits is left out. The number of codes for the
given triplet is finite and depends on the selection of
parameters. The example for triplet (3, 1, 7) is shown in Table
III. This triplet generates 248 code words.

TABLE III
GENERAL UNARY CODE FOR TRIPLET (3, 1, 7)

n a=3+n*1
nth

code word
number of
code words

range of
integers

0 3 0xxx 23 = 8 0-7
1 4 10xxxx 24 = 16 8-23
2 5 110xxxxx 25 = 32 24-55
3 6 1110xxxxxx 26 = 64 56-119
4 7 1111xxxxxxx 27 = 128 120-247

As we can see from the table, the number of code words

depends on the value of the a parameter. With smaller value
of a, we can present smaller range of integers. As the value of
a changes, for each group of code words we have a certain
prefix. Of course, the prefix property is satisfied.

The number of different general unary codes is given in the

Eq. (1).

12

22
step

startstepstop

. (1)

This expression increases exponentially with parameter
“stop”, so large sets of these codes can be generated with
small values of (start, stop, step) parameters. For example:

1) The triplet (n, 1, n) defines the standard n-bit binary
codes, whose number is given in the Eq. (2).

 n
nn

2
12

22
1

1

 (2)

2) The triplet (0, 0, ∞) defines the codes 0, 10, 110, 1110,...

which are the unary codes but assigned to integers 0, 1, 2, ...
instead of 1, 2, 3,

3) The triplet (1, 1, 30) produces (230 – 21) / (21 – 1) codes,
which is approximately a billion codes.

Besides the unary codes, there are often prefix codes which
are built in a different way. We will explain four of them.
Symbol B(n) is used to denote the binary representation of
integer n, |B(n)| is the length, in bits, of this implementation,
and B (n) is used to denote B(n) without its most significant
bit, which is always 1.

Code C1 is made of two parts. To code the positive integer
n, we first generate the unary code of |B(n)| which is the size
of the binary representation of n, then we append B (n) to it.
Let us demonstrate this in one example, for n = 19 = 100112.
The size of B(19) is 5, so we start with the unary code 11110
and append B (n)=0011. The complete code is 11110|0011.
Length of code C1(n) is 2 n2log +1 bits.

Code C2 is a rearrangement of code C1 where each of the

1+ n2log bits of the first part (the unary code) of C1 is

followed by one of the bits of the second part (the B (n) part).
For n = 19 = 100112, C1(19)=111100011, after every of first 5
bits we insert one bit from the second part. As a result we
have C2(19)=101011110.

Code C3 is constructed with the following procedure: We
start with |B(n)| coded in C2, and then append B (n). For n =
19 = 100112, |B(19)| is 5 bits, then we code this value in C2,
C2(5)=11101 and append B (19)=0011, and finally we have
C3(19)=111010011. The size of C3(n) is

 nn 222 log1log2log1 bits.

Code C4 consists of several parts. We start with B(n). To
the left of this value we write the binary representation of
|B(n)|–1 (the length of n, minus 1). This procedure continues
recursively, until a 2-bit number is written. A zero is then
added to the right of the entire number to make it decodable.
For n = 19 = 100112, we start B(19)=10011, then add the
binary representation of |B(19)–1|=4 which is 1002, and we
have 100|10011. In the next step, we add the binary
representation of |B(4)–1|=2 which is 102, add it to right of the
current result, and we get 10|100|10011. Finally, we add a
zero to the right of current result, and as the final result we
have C4(19)=10|100|10011|0.

The length of these four codes increases as while the

length of unary code increases as n. These codes are therefore
good choices in cases where the data consists of integers n
with probabilities that satisfy certain conditions.

n2log

498

IV. SOFTWARE IMPLEMENTATION AND

EXPERIMENTAL RESULTS

For software implementation, we used references [2], [3]
and [5]. The software solution for prefix encoding that we
implemented is “Prefix Coder”. This application can encode
data using unary code and codes C1 and C2. “Prefix Coder” is
developed in C# programming language and .NET
Framework 3.5. The architecture of the application is shown
in Fig. 1.

Fig. 1. “Prefix Coder” architecture.

Prefix coder consists of Main form, Settings form, About

form and User manual form. Main form represents the starting
window of the application and it’s linked with 3 other forms.
Settings form is used for simple settings of the application,
like separators that are used or default input name etc. User
manual form contains instructions for using the “Prefix
Coder”, and the About form has a description of the
application and authors. These four forms together make the
application logic. Main form is also connected with input and
output files.

Input data of the application can be inserted via text field or
a text file. Possible outputs are a text field, a text file or a
binary file. Text field and text file as outputs are used for
representation of the coding results. If the selected output
method is binary file, after the encoding process is finished
the compression rate is shown.

When the encoding process starts, first the input data is read
from the selected input and stored in array of strings, where
each string is a number that needs to be encoded. Next, that
data is forwarded to one of the functions which implements a
coding algorithm for the selected coding method. All of these
functions generate an array of BitArrays. In this array is the
sequence of ones and zeros that is the result of the coding. All
of the functions call SaveCode function which saves the data
in the way that is selected as output method. Since the C#

language doesn’t have an interface that allows for single bits
to be written into a file, all the coded data is first transferred
into bytes and written into files in that form. This also means
that neutral characters (zeros) will be added to last chunks of
data until the chunk is 8-bit long.

Interface of the “Prefix Coder” is designed to be intuitive
and easy to use and it is shown in Fig. 2.

Fig. 2. Interface of the “Prefix Coder”.

The Settings form of the “Prefix Coder” is shown in Fig. 3.

In this form we can adjust properties of the “Prefix Coder”.
These properties are Tooltip time (display time of tooltip),
Separators, Default path for the output file and Default name
for the output file. These properties are initially set to optimal
values. These properties are kept in a separate file. Separators
are used to separate numbers in the Input Field when
“Textbox” is selected as Data input method. User can define
his own separator. In order to do this, he must follow certain
rules. The default separator is white space. If user wants to
add a separator, after entering desired symbol he must add
character “s” without making any spaces. If user does not
want to use white space as a separator, he must first clear
Separators field and then add his separators in a procedure
described above.

Fig. 3. Settings Form.

499

500

The experimental results considering time needed for
compression are shown in Table IV. For all the data in Table
IV tests were performed several times and calculated average
values of the results are taken as final results. It should also be
noted that the duration of the compression depends on the
computer hardware and current utilization of computer
resources. These tests were performed on the AMD
Phenom(tm) 8450 with 2 GB of DDR2 RAM and on
Windows 7 64-bit OS.

TABLE IV
TESTS FOR TIME OF COMPRESSION

 Time of compression (ms)
Input data Unary code Code C1 Code C2

0-100 ~1 ~1 ~1
500 ~5 ~1 ~1

10000 ~400 ~1 ~1
10 two-digit integers 9 3 3
10 four-digit integers 22500 8 8
10 five-digit integers 350000 10 10

From the Table IV it can be seen that the compression with

the unary coding needs much more time than with the codes
C1 and C2, since the length of the unary code increases
linearly, and the compression time is longer for one larger
integer number than for several smaller ones.

In Table V experimental results for compression ratio are
shown. As mentioned before, C# language doesn’t have the
interface for writing single bits in a file, all the output data
have several bits more than it would have if this restriction
doesn’t exist.

TABLE V
TESTS FOR COMPRESSION RATIO

Size of the output file (Byte) /

compression ratio
Size of
input
file

(Byte)

Input Data
Unary
code

Code C1 Code C2

5 500 63 /0% 3 /40% 3 /40 %
5 5,5,5 2 /60% 2 /60% 2 /60%
1 5 1 /0% 1 /0% 1 /0%

20
5,5,5,5,5,5,5,5,

5,5
6 /70% 6 /70% 6 /70%

11 500,500,500 187 /0% 7 /36% 7 /36%

Table V shows that compression ratio increases as the
number of the parameters increase, and decreases with larger
value of numbers in input data.

V. CONCLUSION

In real-world circumstances, the unary code does not give
satisfying results, but it is very important because of the idea
of prefix encoding. For specific values of input data, it takes a
very long time for program execution, and no compression is
achieved.

Codes C1 and C2 give results which are mostly satisfying
and similar. For specific values of input data a very high
compression ratio can be achieved. The time of compression
is very short in most of the cases. Our application implements
the unary code, and both codes C1 and C2, and it is developed
mainly for educational purposes.

REFERENCES

[1] D. Salomon, Data Compression – The Complete Reference,
Springer, 2007.

[2] Form Class, http://msdn.microsoft.com/en-
us/library/system.windows.forms.form%28VS.71%29.aspx,
website last visited on 4/4/2011.

[3] Measuring Execution Time in C#, http://www.codersource.net
/microsoft-net/c-miscellaneous/measuring-execution-time-in-
c.aspx, website last visited on 4/4/2011.

[4] Prefix code - Wikipedia, the free encyclopedia,
http://en.wikipedia.org/wiki/Prefix_code, website last visited on
4/4/2011.

[5] BitArray Class (System.Collections), http://msdn.microsoft.com
/en-us/library/system.collections.bitarray.aspx, website last
visited on 4/4/2011.

http://www.codersource.net/
http://msdn.microsoft.com/

