

A C# Software Implementation of the Golomb Encoding
Method for Text Compression

Student authors: Danijel M. Pavlović1 and Marko B. Mitić1

Mentors: Radomir S. Stanković2 and Dušan B. Gajić2

Abstract – Lossless data compression is a very important class
of data compression algorithms. Golomb encoding is a type of
prefix encoding which is often used as part of complex lossless
data compression algorithms. In this paper, we present a C#
software implementation of Golomb encoding with an intuitive
graphical user interface. Experimental results, showing
compression values and algorithm running times, are also
presented and discussed. The main motivation for developing
this software solution was to create an educational tool that can
help in better understanding and presentation of algorithms for
data compression.

Keywords – C# programming solution, data compression,

Golomb code, text compression.

I. INTRODUCTION

The large amount of data which people use in every day
work is forcing the data compression methods to develop fast
and give better and better results in lossless data compression.
Golomb encoding [1] is a type of a prefix code often used for
such purposes. A prefix code is a variable size code that
satisfies the prefix property. Golomb encoding is based on
run-length encoding (RLE). For example, if there is a binary
string where zero appears with probability p and a one appears
with probability 1-p, and with the growth of p it is more likely
that longer sequences of one and the same values will appear.
But, whether this is true for a particular data set to be coded
highly depends on the volume of the data itself and the
preliminary chosen code type.

 The probability of a run of n zeros is pn and the probability
of a run of n zeros followed by a 1 is pn(1-p), indicating that
run lengths are distributed geometrically [2].

Golomb code for nonnegative integers n depends on the
choice of parameter m, which is median and its value is such
that about half the run lengths are shorter than m and about
half are equal to or greater than m, which make this code
parameterized prefix code. In computing the Golomb code [4]
we need three other quantities q (quotient), r (remainder), and

c. These three quantities are based on the following equations:

 q =
n
m
 

 
, (1)

 r = n – qm , (2)

 c = 2log m   . (3)

The code is constructed in two parts; the first is the value

of q, coded in unary, and the second is the binary value of r
coded in a special way. The first 2c- m values of r are coded,
as unsigned integers, in c-1 bits each and the rest are coded in
c each (ending with the biggest c-bit number, which consists
of c 1`s). Example of calculating necessary quantities and
creating family of Golomb codes for m = 2 through 7 are
shown in Table I.

TABLE I
FAMILY OF GOLOMB CODES FOR M = 2 THROUGH 7.

m 2 3 4 5 6 7
c 1 2 2 3 3 3
-m 0 1 0 3 2 1

m/n 0 1 2 3 4 5 6
2 0|0 0|1 10|0 10|1 110|0 110|1 1110|0
3 0|0 0|10 0|11 10|0 10|10 10|11 110|0
4 0|00 0|01 0|10 0|11 10|00 10|01 10|10
5 0|00 0|01 0|10 0|110 0|111 10|00 10|01
6 0|00 0|01 0|100 0|101 0|110 0|111 10|00
7 0|00 0|010 0|011 0|100 0|101 0|110 0|111

Software implementation, which we will discuss in this

paper, implements the algorithm for lossless data compression
[5] using the Golomb code. We will also say a few words
about experimental results which we collected from the
application. In the end, we will also offer some conclusions.

II. SOFTWARE IMPLEMENTATION DETAILS Student authors:
1Danijel Pavlović and Marko Mitić are with the Faculty of

Electronic Engineering, Aleksandra Medvedeva 14, 18000 Nis,
Serbia, E-mails: daki88@elfak.rs, zmicezmaj@elfak.rs

Mentors:
2Radomir Stanković and Dušan Gajić are with the Faculty of

Electronic Engineering, Aleksandra Medvedeva 14, 18000 Nis,
Serbia, E-mails: radomir.stankovic@elfak.ni.ac.rs, dusan.gajic@
elfak.ni.ac.rs.

A. Implementation details

Application which is presented in this work is developed in
C# programming language and .NET 3.5 framework.
Designed graphical user interface is very simple because
focus is not on interface, it is on implemented algorithm. Also
application is very easy for usage. Simply choose an input text

501

mailto:radomir.stankovic@elfak.ni.ac.rs

file for compressing, and choose output text file if it exist, if
not just type name for that output file and application will
create it for you, then start compression on one single button.

Architecture of application composed from two forms, first
of them is main form which contains all functionality for
making compression complete, and the second form which is
just user manual. Input in application is text file for
compression, and the output is compressed text file. Graphical
view of application architecture is shown in Figure 1.

Figure 1. Architecture of the application.

Main problem during developing this application was that
bit-level operations are not a natural way of thinking in C#
[3]. As it is explained before Golomb code uses run lengths of
zeros and ones for creation families of codes for coding those
values. Therefore in the application work with bits is
simulated on special way.

As we implemented algorithm for text compression, and as
we knew that characters inside the text are coded with values
from ASCII table which consist of zeros and ones, we read
one character from text, convert it to its ASCII value, and we
saved it in one string variable. Every other character is also
converted to ASCII value and concatenated to the string
variable that is used in the beginning. This process practically
converts whole text document into string variable that
represents bit representation of text. Example of this
conversion is shown in Example 1.

Text = “abc”

Characters a b c
ASCII
values

1100001 1100010 1100011

Result string = “a”+”b”+”c”=

=”1100001”+”1100010”+”1100011”=
=“11000011100101100011”

Example 1. Conversion from text to a binary string value.

Based on that string value, we calculated all necessary
parameters that are explained in introduction. Using that
parameters we created family of Golomb code. Family of
code is used for coding run lengths of zeros in primary string
value. On that way whole text from document is encoded with
Golomb code. Example of encoding is shown in Example 2.

StringForCoding =“11000011100101100011”

Run length of zeros Code

0 0
1 10
2 110
3 1110
4 11110

Encoded String = “10111110101011101101011110101”

Example 2. Encoding of a binary string.

When we have encoded binary string we convert that string

into ASCII values, practically we do reverse process
compared to the previous. We read from this encoded binary
string values of zeros and ones for one ASCII character, and
convert that zeros and ones into ASCII character. That
character is written into output text file. This process is
repeating while there are still not processed zeros and ones in
encoded binary string. When this process is finished also is
finished whole process of text compression.

Because of using the C# development environment and
.NET 3.5 framework during implementation of this solution, it
is necessary for proper functioning of application to use
application on Microsoft Windows platforms with installed
.NET framework 3.5. In any other case application will not
work properly.

B. Graphical user interface details

Graphical user interface is shown in Figure 2. The user
interface is designed to be as simple as possible. There are
text fields where is shown path to the input and output file
respective, when they are chosen by the user of application by
clicking on the browse buttons. Below browse section of the
main form, is statistical section where user can see details
from compression, like size of input and output file,
output/input ratio, which is calculated using equation 4, and
run time for compression.

 100%
Output sizeOfOutputF

InputRatio sizeOfInputFile


ile
 (4)

There is also one list box on the form which is used to show
how run lengths of zeros are encoded with created family of
Golomb code. In the top right corner of main form is a button
which starts user manual form. In the top left corner there is a
button which starts info form about developers.

502

Figure 2. Graphical user interface of the application.

III. EXPERIMENTAL RESULTS AND DISCUSSION

During the testing of the application for different sizes of
input files we collected different results. The application is
tested on a desktop PC with the specification given in Table
II. Results and values of input, output files and run times are
shown in the Table III.

As we can see from the Table III results are not so good.
The main reason why the ratio is not so good is in
characteristics of the Golomb code. Golomb code as it said
before, is a parameterized prefix code. It depends on median
m of run lengths of zeros, and m depends on probability p of
appearance of zero lengths. The nature of ASCII code for
characters is that there are no long runs of zeros, which are
necessary for creating a good family of Golomb codes. A
good family of the Golomb code provides us with better
output/input ratio.

Because of this fact we tried to improvise long runs of
zeros. If we look at ASCII table we can see that long run of
zeros is in character “space”. We tested our application with
text file in which we have table of integer values, in that table
columns are separated with space character. As we can see
from the Table III results for input/output ratio showing us
minimal compression of the input files. In this kind of the
input files the runs of zeros are more frequently than in input
files with text content, therefore and parameters for Golomb
code are better as well as family of codes.

TABLE II
TEST PC SPECIFICATION

CPU Pentium® Dual-Core CPU

E5200 @2.5 GHz
RAM 2 GB DDR2
OS Windows 7 (64-bit)

GPU NVIDIA GeForce 9400 GT
Motherboard MSI Intel P31 Neo-F

TABLE III
EXPERIMENTAL RESULTS FOR INPUT TEXT FILES WITH TABLE OF

INTEGER CONTENT

Size of
input file

(KB)

Size of
output file

(KB)

Output/Input
ratio (%)

Run time
(ms)

0.53 0.49 92.45 13
1.05 0.99 94.29 32
2.00 1.88 94.00 56
5.96 5.58 93.62 820
10.03 9.39 93.60 3570
20.04 18.78 93.71 10356
50.26 47.1 93.71 140917
100.3 93.99 93.72 506916

Beside the bad output/input ratio from the Table III, we can

also see that run time for compression is unsatisfactorily. The
cause for long compression time is in chosen development
environment. Like it is said before the main problem in
implementation was because C# is not created with focus on
bit-level operations. Because of this constraint we had to do
conversions between data types into two directions, as we
explained in implementation details, and this significantly
slows the process of compression. If we had chosen some
other development environment in which working with bits is
faster and easier, for example C or C++, the run time for
compression will have been undoubtedly shorter, but good
compression ratio will be probably the same like in this
example.

IV. CONCLUSIONS

In this paper we presented the software solution which
implements the algorithm for text compression using the
Golomb code. Considering what has been said above we can
conclude that: the Golomb code is not the best choice, for
algorithms which are used for text compression. This is
because of the fact that the probability of run lengths of zeros
in binary text representation is too small. The other reason is
when we want to implement this algorithm for compression
which uses the Golomb code, it is better to use it in a
development environment which has ability and good
interface for working with bits.

The Golomb code would show better results in compression
for a different type of data. The data where probability, of run
lengths of zeros, is big are suitable for encoding with this
code, for example monochromatic pictures.

The application which is presented in this paper is
developed for educational purposes. It can be a good
educational tool for presentation and understanding the
compression algorithm which uses the Golomb code for text
compression.

503

504

REFERENCES

[1] David Salomon, Data Compression – The Complete Reference,
Springer, 2007.

[2] Golomb coding, http://en.wikipedia.org/wiki/Golomb_coding,
website last visited on 12/04/2011.

[3] C# Tutorials, http://msdn.microsoft.com/en-us/library/
aa288436(v=vs.71).aspx, website lat visited on 12/12/2010.

[4] Compression Algorithms, http://www.inference.phy.cam.ac.uk/
itprnn/code/c/compress/, website last visited 12/04/2011.

[5] Lossless data compression, http://en.wikipedia.org/wiki/
Lossless_data_compression, website last visited on 05/04/2011.

http://msdn.microsoft.com/en-us/library/
http://www.inference.phy.cam.ac.uk/%20itprnn/code/c/compress/
http://www.inference.phy.cam.ac.uk/%20itprnn/code/c/compress/
http://en.wikipedia.org/wiki/

