

A Software Implementation of the Shannon-Fano Coding
Algorithm

 Student authors: Đorđe K. Manoilov1 and Daniel S. Dimitrov1
 Mentors: Radomir Stanković2 and Dušan Gajić2

Abstract – The Shannon-Fano coding technique is one of the
earliest algorithms which produce code words with minimum
redundancy and it serves as a basis for some more recent
methods. In this paper, we present a C# implementation of the
Shannon-Fano encoding method for data compression. We
conducted various experiments with different inputs provided to
the application and recorded compression rates and algorithm
running times. The presented solution features a graphical user
interface and has solid real-world performance, but it was
developed primarily as an education tool that can help students
to better understand this encoding technique.

Keywords – Shannon-Fano encoding, C# programming

solution, text compression.

I. INTRODUCTION

Data compression is a mathematical method - an algorithm
used to decrease the number of the bits in a file that are
necessary for storage, sending or transferring of electronic
information. In other words, by using compression the size of
a file or group of files is decreased and space needed for
storing the information becomes smaller.

There are some compression methods that loose data, but
we will discuss only compression that occurs without loss.
The "good" part is that the compressed data will be
decompressed in the same form (recovering the data into its
initial state), but an error producing even a bit less would be
fatal. Compression with no loss can be realized with different
algorithms like: RLE (Run Length Encoding) algorithm,
algorithm for removing all zeros, Shannon-Fano algorithm,
Huffman algorithm [1].

We will discuss the Shannon-Fano compression. For
Shannon-Fano compression there is an algorithm which uses
prefix coding [1].

In this paper, we will present its implementation and
include test results for different textual files [7]. In Section II
we describe the theoretical basis of the Shannon-Fano coding.
Next, in Section III we present a software solution for data
compression using the Shannon-Fano algorithm realized in C#
programming language. This application is mainly developed

for educational purposes. In the following Section IV we give
experimental results for data compression ratio, time and
number of different characters. We close the paper with some
conclusions in the final section.

II. SHANNON - FANO ALGORITHM

A. Theoretical basis and the algorithm

Shannon-Fano coding was developed by Claude Elwood
Shannon and Robert Fano [1]. This is a technique which uses
prefix encoding. It is based on a set of symbols and their
probabilities.

A prefix code is a type of a code system which is
characterized by a prefix property. This property states that
there is no valid code word in the system that is a prefix (start)
of any other valid code word in the set. Message can be
transmitted as a sequence of concatenated code words,
without any extra markers to frame the words in the message
using prefix code. The recipient decodes the message by
repeating the process searching for prefixes that form valid
code words. This is not possible with codes that lack the
prefix property. Shannon–Fano coding starts with the set of
symbols, with elements arranged in order from most probable
to least probable. After that, the set is divided into two sets
whose total probabilities are as close as possible to being
equal. All symbols then have the first digits of their codes
assigned. Symbols in the first set receive "0" and symbols in
the second set receive "1". Shannon–Fano coding uses a
binary tree structure. As long as any set with more than one
member remains, the same process is repeated. When a set has
been reduced to one symbol this means that the symbol's code
is complete and will not form the prefix of any other symbol's
code.

The algorithm produces codes with variable and fairly
efficient length. When the two smaller sets produced by
partitioning are of exactly equal probabilities, one bit of
information used to distinguish them is used most efficiently.
It can be seen from the examples that the Shannon – Fano
algorithm does not always produce the optimum length codes.
For a set of probabilities {0.35, 0.17, 0.17, 0.16, 0:15}
Shannon - Fano coding does not give the optimal length code.
The Shannon – Fano compression uses binary tree as data
structure where the encoded symbols are placed in the leaves
of this tree.

Student authors:
1Đorđe Manoilov and Daniel Dimitrov are with the Faculty of

Electronic Engineering, Aleksandra Medvedeva 14, 18000 Niš,
Serbia, E-mails: djordje.manoilov@elfak.rs, ddaniel@elfak.rs.

Mentors:
2Radomir Stanković and Dušan Gajić are with the University of

Niš, Faculty of Electronic Engineering, Aleksandra Medvedeva 14,
18000 Niš, Serbia, E-mails: radomir.stankovic@gmail.com,
dusan.gajic@elfak.ni.ac.rs.

The tree is constructed in the specific way in order to define
the effective code table. The actual algorithm is simple:
 For a given list of symbols, develop a corresponding list

of probabilities or frequency counts, so that each
symbol’s relative frequency of occurrence is known.

505

mailto:radomir.stankovic@gmail.com

 Sort the lists of symbols according to frequency, with the
most frequently occurring symbols at the left and the least
common at the right.

 Divide the list into two parts, with the total frequency
counts of the left half being as close to the total of the
right as possible.

 The left half of the list is assigned the binary digit 0, and
the right half is assigned the digit 1. This means that the
codes for the symbols in the first half will all start with 0,
and the codes in the second half will all start with 1.

 Recursively apply the steps 3 and 4 to each of the two
halves, subdividing groups and adding bits to the codes
until each symbol has become a corresponding code leaf
on the tree.

B. The field of use

Shannon–Fano coding is used in the IMPLODE [2]
compression method, which is part of the ZIP file format.
Huffman algorithm [1] is an improved version of the Shannon
– Fano algorithm used to compress music files in MP3 format
and for JPEG picture compression [8].

III. ARCHITECTURE OF THE APPLICATION AND

THE PROGRAMMING IMPLEMENTATION

The application is developed in Visual C# .NET 3.5 and it
can be only used within Microsoft Windows operating system.

The application consists of four forms (Fig. 2.). "Main
form" is used for selection of file (for coding) or for manual
input of text for coding. Also, on the form "Main form" (Fig.
1.) the symbols and their respectable codes are displayed. It is
possible to save coded text on desired location on disk or
other medium. "Manual form" offers a brief user manual. In
"Statistics form" (Fig. 3.) we can see degree of compression
for selected text. "Information form" includes information
about authors of the application.

Text that is necessary to compress is placed into a string
variable. In the application there is a function for the
separation of the different nodes, and also for calculating their
probabilities of occurrence. Probability of occurrence of
symbols is calculated as the ratio of the number of
occurrences of this symbol and the number of symbols in the
file. For the purposes of the algorithm, it is necessary to
arrange these symbols in ascending or descending order. After
sorting, coding of symbols is done by calling the Shannon-
Fano algorithm implementation. All symbols in the text
change in to their code and all of that put into the new string.
Code is replaced with its symbols via library function
StringReplace.

C# does not support work on the level of bits. Therefore,
before entering into a binary file, the sequence of 8 characters
is stored in the buffer, which is the size of a byte. 0 is entered
into the buffer by moving the contents of the buffer to the left
(shift - left), 1 is entered into the buffer using the shift - left
and logical OR operation with 0x01h. This method is possible
if the length of the coded text is divisible with 8. It is therefore

Fig. 1. Main form of the application.

506

necessary to add additional 0 in buffer with last entry in the
file. This way leads to an increase in encoded file, for up to 7
bits, but it allows the simulation of work on the level of bits in
C#.

IV. EXPERIMENTAL RESULTS

The application was tested for various input files in order to
get time and percentage of compression. Input file is a text.
The all of the experiments were done using a Laptop PC with
Intel Core 2 Duo T5450 processor and 3 GBs of RAM,
running a Windows XP Service Pack 2 operating. The
duration of compression depends on the computer's hardware
and current utilization of computer resources. The test results
for normal text are shown in Table I, and test results for
source code are shown in Table II. Tables I and II also show
that the compression speed and compression ratio also depend
on the number of different characters and file size. For a small
number of different character(s) encoding goes fast regardless
of the size of the file. This is because each character encodes a
small number of bits and operations with strings quickly
completed. For very large files (about 60 MB) the application
reports “Memory error”. The problem is caused because of the
usage of strings and can be solved by using a StringBuilder.
Time coding for a normal text file as source code or a book is
at most a few seconds. Compression ratio is about 50% but if
there are lots of similar character goes up to 80%. From the
presented results we can also conclude that the compression
ratio of source codes is less than for the plain text.

Fig. 2. The architecture of the application.

Fig. 3. Statistics form.

507

508

TABLE I

DIFFERENT TEXT FILES, n – NUMBER OF DIFFERENT
CHARACTERS, t1 – TIME CODING, t2 – RECORDING TIME, fs –
FILES SIZE, cr – COMPRESSION RATIO

n t1 t2 fs cr

4 0 ms 15.625 10B -> 3B 70 %
10 0 ms 0 ms 10B -> 5B 50 %
15 0 ms 15.625 ms 21B -> 11B 47.6 %
5 0 ms 15.625 ms 39B -> 12B 69.2 %
47 0 ms 15.625 ms 1,88K -> 1006B 47.7 %
116 656.2 ms 703.12 ms 100,9K -> 49,8K 50.6 %
116 31.9 s 29 s 4847K -> 2394K 50.6 %
3 10.01 s 3.625 s 23523K->4324K 81.8 %
3 27 s Mem error 61.2M -> ? ?
79 5.112 s 3.718 s 889K -> 501,B 43.26%

TABLE II

SOURCE CODES, n – NUMBER OF DIFFERENT
CHARACTERS, t1 – TIME CODING, t2 – RECORDING TIME, fs –
FILES SIZE, cr – COMPRESSION RATIO

n t1 t2 fs cr

92 807 ms 620ms 126K -> 55,1K 56.2%
95 186 ms 144ms 29,2K -> 14,2K 51.13%
71 44 ms 36ms 8,56K -> 4,55K 46.88%
90 187 ms 118ms 29,7K -> 12,8K 56.99%
90 153 ms 116 ms 21,3K -> 13,2K 38.14%
71 19 ms 17 ms 3,1K -> 1,9K 38,71%
58 5 ms 7 ms 1K -> 647B 41.5%
65 28 ms 22 ms 5,4K -> 3,15K 41.9%
63 13 ms 12 ms 2,3K -> 1,35K 41.61%

V. CONCLUSION

Through performing the experiments with our
implementation of the Shannon-Fano algorithm we reached
the following conclusions:
 The most common characters have shorter code words

and opposite.
 For the same number of different characters, the

algorithm has the same compression ratio.
 For two files with the same size, but with different

number of unique characters, a file with a smaller number
of different characters has a higher compression ratio.

 Time required for recording and encoding increases with
the size of the input file.

Application that we have developed cannot actually

compete with existing commercial applications that compress
data. It was developed primarily as an education tool that can
help students to better understand this encoding technique that
serves as basis of more recent compression methods.

REFERENCES

[1] David Salomon, Data Compression: The Complete Reference,
3rd Edition, Springer, 2004. (ISBN 0-387-40697-2)

[2] http://en.wikipedia.org/wiki/Shannon%E2%80%93Fano_coding
website last visited on 14/04/2011.

[3] http://www.ustudy.in/node/6409, website last visited on
15/12/2010.

[4] http://www.binaryessence.com/dct/en000041.htm, website last
visited on 14/04/2011.

[5] http://cppgm.blogspot.com/2008/01/shano-fano-code.html,
website last visited on 14/04/2011.

[6] http://www.dotnetspark.com/Forum/169-how-to-open-one-chm-
help-file-c-sharp-windows.aspx, website last visited on
14/04/2011.

[7] http://www.onlinehowto.net/Why-compress-/2, website last
visited on 14/04/2011.

[8] http://en.wikipedia.org/wiki/Huffman_coding, website last
visited on 14/04/2011.

