

A Software Tool for Data Compression
Using the LZ77 ("Sliding Window") Algorithm

Student authors: Vladan R. Djokić1, Miodrag G. Vidojković1
Mentors: Radomir S. Stanković2, Dušan B. Gajić2

Abstract – Data compression is a field of computer science that
is always in need of fast algorithms and their efficient
implementations. Lempel-Ziv algorithm is the first which used a
dictionary method for data compression. In this paper, we
present the software implementation of this so-called "sliding
window" method for compression and decompression. We also
include experimental results considering data compression rate
and running time. This software tool includes a graphical user
interface and is meant for use in educational purposes.

Keywords – Lempel-Ziv algorithm, C# programming solution,
text compression.

I. INTRODUCTION

While reading a book it is noticeable that some words are
repeating very often. In computer world, textual files
represent those books and same logic may be applied there.
On the other hand, we can be reasonably sure that some words
occur in a very small fraction of the text sources in existence.

Following an idea of repeating words, it is logical to keep a
list, or dictionary, of frequently occurring patterns. When any
of those patterns appear in the source output, they are encoded
with appropriate reference to the dictionary. If the pattern
does not occur in the dictionary, encoding should look for
some other, less efficient, method for encoding. In effect, we
are splitting the input into two classes - the frequently
occurring patterns and the infrequently occurring patterns. In
order to name this technique as successful, occurring patterns
must appear often and also the size of the dictionary must be
much smaller than the number of all possible patterns.

This paper describes an implementation of the LZ77
encoding which is one of the dictionary method techniques. In
Sections II and III, we describe the theoretical bases of the
LZ77 coding and some other types of dictionary coding,
respectively. Next, in Section IV we present a software
solution for data compression using the LZ77 algorithm
realized in C# programming language, along with the
experimental results for data compression ratio. This
application is mainly developed for educational purposes. We

close the paper with some conclusions in the final section.

II. LEMPEL-ZIV ALGORITHM

A. Theoretical basis

The Lempel-Ziv algorithm [1] is an algorithm for lossless
data compression. It is actually a whole family of algorithms,
(see Figure 1) stemming from the two original algorithms that
were first proposed by Jacob Ziv and Abraham Lempel in
their landmark papers in 1977. [1] and 1978. [2]. LZ77 and
LZ78 got their name by year of publishing.

 The Lempel-Ziv algorithms belong to adaptive dictionary
coders [1]. On start of encoding process, dictionary does not
exist. The dictionary is created during encoding. There is no
final state of dictionary and it does not have fixed size.

B. The field of use

Some of modern algorithms for compression and
decompression are variations of LZ77. Known compression
methods like arj, lha, zip, zoo, stac, auto-doubler, 7-zip,
DEFLATE have roots in this algorithm. Also GIF image
compression [4] and the V.42 modem standard [4] are based
on the LZ algorithm.

III. LZ77 ALGORITHM

A. Terms used in algorithm description

In order to explain how algorithm works some terms should
be explained. Sequence of characters that needs to be
compressed is an input stream. One element in input stream is
a character. Coding position is position of the character that is
currently coded and in same time it is beginning of look-ahead
buffer which size is predefined and consists of another
sequence of characters. A pointer has task to point to the
match in the window. It also declares length of match.

Student authors:
1Vladan R. Djokić and Miodrag G. Vidojković are with the

Faculty of Electronic Engineering, Aleksandra Medvedeva 14,
18000 Nis, Serbia, E-mail: djolecorp@elfak.rs,
miske87@gmail.com.

Mentors:
2Radomir S. Stanković and Dušan B. Gajić are with the

University of Niš, Faculty of Electronic Engineering, Aleksandra
Medvedeva 14, 18000 Niš, Serbia, E-mails:
radomir.stankovic@gmail.com, dusan.gajic@elfak.ni.ac.rs.

LZ77

LZR

LZSS LZH

LZB

LZ78

LZC

LZT LZMW

LZW

Figure 1. LZ family of algorithms.

509

mailto:djolecorp@elfak.rs
mailto:radomir.stankovic@gmail.com
mailto:dusan.gajic@elfak.ni.ac.rs

B. The encoding method

Idea of algorithm is to search the window for the longest
match. If window reached end, it also should check beginning
of the look-ahead buffer. Finally, it should output a pointer to
appropriate match. Output may not contain only pointers since
it may occur that there is not a single match. In that case,
output is pair of zeros plus character which could not be found
in dictionary. If there is a match, pair has number of
repetitions, position where match is found and following
character (see Table II, column Output).

C. The decoding method

Generally, decoder is much simpler than the encoder. It has
to know some parameters which are used during compression
and those are size of a dictionary and length of a look-ahead
buffer. Then decoder should reconstruct dictionary and look-
ahead buffer from original. Finally, it may start decoding
process. First should get following token, if there exists any,
then to find the match in its buffer. Output is complete match
and character which comes after pair of numbers. Next action
is to shift the matched string and the third field into the buffer.
That process is repeated as long as there are tokens available.

D. Practical example

The encoding process is presented in Table II. The column
Step is used only for numeric purposes so that can be seen
when one turn of encoding is completed. The column Pos is

current position that is coded. In first place, first character has
position 1. The column Match represents the longest match
found in the window. The column Char shows the first
character in the look-ahead buffer after the match. Finally, the
column Output, as already mentioned in section B, presents
the output in the format (number, number) character. One
example of encoding process may be seen in Table II. Notice
how in step 3 match is longer than current dictionary and it
goes through look-ahead buffer so output sequence is (3,1) S.

Figure 2. LZ77 application architecture.

TABLE I
INPUT STREAM FOR ENCODING

Pos 1 2 3 4 5 6 7 8 9
Char A N A N A S S A A

TABLE II
THE ENCODING PROCESS

Step Pos Match Char Output
1. 1 -- A (0,0) A
2. 2 -- N (0,0) N
3. 3 A N S (3,1) S
4. 7 -- S (0,0) S
5. 8 A A (5,1) A

IV. SOFTWARE IMPLEMENTATION AND

EXPERIMENTAL RESULTS

The software solution for LZ77 encoding and decoding that
is implemented is named LZ77, and this application can
encode and decode ASCII text. LZ77 is developed in C#
programming language and .NET Framework 3.5. The
architecture of the application is created using Visual Studio
2010 and is shown in Figure 2. Main window of application is
shown in Figure 3.

The application consists of three buttons and two combo
boxes. First one on the far left is “Load” which is used to load
a file. It is possible to load files with any extension, textual
files and special archives which are created with this
programme using .lz77 extension.

After successful load, all text from input file is transferred
into string and ready for compression or decompression. If we
have loaded textual file, we can choose dictionary size in bits
and look-ahead buffer size. Application offers several values
as choice for dictionary size – from 8 to 16, 20, 24 and 28.
Theoretically, dictionary size of 32 bits is possible but due to
integer constraint it is not applicable. Also, length of look-
ahead buffer can be changed with one of values 2, 4, 8, 16, 32,
64 and 128 characters or translated in bits, from 1 to 7 bits can
be used for look-ahead buffer. Statistically is proven that
optimal results are achieved with dictionary size between 10
and 12 bits and size of look-ahead buffer should be from 5 to
7 bits [7]. If user doesn’t choose any of these values, default
values are used and they are 10 bits for dictionary and 5 bits
for look-ahead buffer.

510

By clicking on “Compress” button, text is compressed using
LZ77 algorithm and new window opens where output location
of archive may be chosen with .lz77 extension. Besides
regular LZ77 compression algorithm, already described in this
paper, we have added file header which is useful for decoding.
First byte is reserved for this file header. First five bits contain
value of dictionary size and following three contain look-
ahead buffer size. Even those bits have mini dictionary and for
example, combination of 01010|101 means that dictionary size
is 10 bits and look-ahead size is 5 bits. Binary value is
decoded into decimal value. Now, dictionary size in
characters is 2d and size of look-ahead buffer is 2l where d and
l are values received from first bit.

If compression is successful to user is shown message box
with speed of compression, measured in milliseconds. For
small input files speed is usually around 0. Ratio and speed of
compression may be seen in Table III.

To decompress file, first, file should be loaded using “Load”
button and then by clicking on “Decompress”, it is
decompressed. Note that only files created with this
programme have extension .lz77 and therefore only those files
may be successfully decompressed. If decompressing is
successful to user is shown speed of decompression in
message box, similar like compression. Speed of
decompression may be seen in Table IV.

Decompress works as follows, first byte is read and values
of dictionary and look-ahead are stored in variables, on way

that is already explained in this paper. Then each pair is read,
and returned their original value. Note that
compression/decompression only works with ASCII
characters since ASCII requires 7-bits for each character.
Unicode coding/decoding is harder to achieve since Unicode
coded character doesn’t have constant size in bits.

All tests are performed using optimal compression values
for dictionary and look-ahead buffer. Also, all tests are
performed on same machine HP Pavilion dv6 Notebook PC
using Intel(R) Core(TM)2 Duo CPU T6600 @ 2.20GHz,
2.20GHz, 3GB Ram memory on 64-bit Operating System
Win7. All values (unless there are written actual
measurements) of files are measured in bytes, speed in
milliseconds and ratio in percents.

TABLE III
RATIO AND SPEED OF ENCODING PROCESS

Input type File size Compressed Speed Ratio
Text- normal 5 16 0 320%
Text- repetitive 179 47 0 26%
Text- normal 640 709 0 111%
C++ code text 1528 384 16 25%
Book 12534 9853 63 79%
Book 69369 49518 281 71%
Book 544792 385953 2512 71%
Text- repetitive 760320 68361 172 9%
Text- repetitive 12MB 1MB 4200 8%
Text 100 MB 62.5MB 330 s 63%

TABLE IV
SPEED OF DECODING PROCESS

Input type File size Speed
Text- normal 16 0
Text- repetitive 47 0
Text- normal 709 0
C++ code text 384 0
Book 9853 56
Book 49518 405
Book 385953 2215
Text- repetitive 68361 180
Text- repetitive 1MB 7400
Text 62.5MB 350 s

Figure 3. LZ77 application main window.

V. CONCLUSION

In this paper, we have presented a software implementation
of LZ77 algorithm. We have performed various tests on
different file sizes and file types, and gathered experimental
results which may be used in educational purposes. The
application may be used in better understanding of LZ77
algorithm.

Implementation of LZ77 algorithm is giving the best results
when the input file has repetitive text. Also, good compression
is achieved on C++ source files and on book text.
Compression is not satisfactory when the input file is too
small. Normally, in real-world applications, the compression
is performed on books and results in compression rates around
70-80% of the original file size.

REFERENCES

[1] Jacob Ziv, Abraham Lempel, “A universal algorithm for
sequential data compression”, IEEE Transactions On
Information Theory, Vol. It-23, No. 3, May 1977.

[2] Jacob Ziv, Abraham Lempel, "Compression of Individual
Sequences via Variable Rate Coding", IEEE Transactions on
Information Theory, Vol. 24, No. 5, pp. 530-536, Sep. 1978.

511

512

[3] Khalid Sayood, Introduction to Data Compression, Morgan
Kaufmann Publishers, Published 1996, Second Edition 2000.

[4] Christina Zeeh, The Lempel Ziv Algorithm, Seminar ”Famous
Algorithms”, January 16, 2003.

[5] http://oldwww.rasip.fer.hr/research/compress/algorithms/fund/l
z/lz77.html, last visited on 8/12/2010-10:00.

[6] David Salomon, Data Compression, Fourth Edition, Springer
2007.

[7] Terry Welch, A Technique for High-Performance Data
Compression, IEEE Computer, 17(6):8-19, June 1984.

[8] M. Salson, T. Lecroq, M. L´eonard, and L. Mouchard. Dynamic
extended suffix arrays. Journal of Discrete Algorithms, In Press,
Corrected Proof, 2009.

[9] M. Crochemore, L. Ilie, and W. Smyth. A simple algorithm for
computing the Lempel-Ziv factorization. In DCC ’08: Proc. of
the IEEE Conference on Data Compression, pages 482–488,
2008.

http://oldwww.rasip.fer.hr/research/compress/algorithms/fund/lz/lz77.html
http://oldwww.rasip.fer.hr/research/compress/algorithms/fund/lz/lz77.html

