

HED (Huffman Encoder - Decoder) - An Application for
Text Encoding and Decoding

Students: Miroslav Z. Manić1 and Ivan S. Nikolić1

Mentors: Radomir Stanković1 and Dušan Gajić1

Abstract – Huffman encoding is a lossless data compression
method often used in practical applications like MP3 audio
encoding, JPEG image encoding or ZIP’s DEFLATE algorithm.
In this paper we present the application we named HED
(Huffman Encoder - Decoder) which we developed using C#.
This software tool can be used for both text compression and
decompression and includes the compression statistics
(compression ratio, compression time etc.). Results of the
practical experiments conducted with the HED application are
also presented and analyzed.

Keywords - Huffman encoding and decoding, algorithm
implementation in C#.

I. INTRODUCTION

Lossless data compression is a class of data compression
algorithms. Those algorithms allows the exact original data to
be reconstructed from the compressed data.

In computer science, data compression is the process of
encoding information using fewer bits than a more obvious
representation would use, through use of specific encoding
schemes. For example, this article could be encoded with
fewer bits if we accept the convention that the word
"Huffman" be encoded as "Huf". One popular instance of
compression that many computer users are familiar with is the
ZIP file format, which storing many files in a single output
file.

Compressed data communication only works when both the
sender and receiver of the information understand the
encoding scheme. It means that compressed data can only be
understood if we know which decoding method is used by the
sender. This is possible because most data that we use have
statistical redundancy. Detailed explanation of this is given in
[2]. For example, the letter 'e' is much more common in
English text than the letter 'z' [3]. Lossless compression
algorithms exploit statistical redundancy in such a way as to
represented the sender's data more concisely, but nevertheless
perfectly. Compression is important because it helps reduce
the consumption of expensive resources, such as disk space.
On the other side, compression requires information

processing power, which can also be expensive. Some
schemes are reversible so that the original data can be
reconstructed (lossless data compression), while others accept
some loss of data in order to achieve higher compression
(lossy data compression).

Huffman coding is a statistical technique which attempts to
reduce the amount of bits required to represent a string of
symbols. The algorithm allows symbols to vary in length.
Shorter codes are assigned to the most frequently used
symbols, and longer codes to the symbols which appear less
frequently in the string. Applications which uses Huffman
code are very frequent in computer science. This code is not
only for text coding, it is used for picture compression, audio
and video compression etc. Huffman coding is useful for
compression data where there are bits which are most
frequently used.

In this paper we present the application we named HED
(Huffman Encoder - Decoder) which is developed using C#.
This software tool can be used for both text compression and
decompression and under the hood there is Huffman
algorithm for data compression.

The paper is organized as follows. In section 2 we will see
Huffman coding procedure. The architecture and
implementation of Huffman algorithm in our application is
given in Section 3. Section 4 is reserved for practical
experiments and results which are presented and analyzed.
Section 5 summarizes the results.

II. HUFFMAN ENCODING AND DECODING

PROCEDURE

Arithmetic coding can be viewed as a generalization of
Huffman coding. Although arithmetic coding offers better
compression performance than Huffman coding, Huffman
coding is still in wide use because of its simplicity.

Encoding

Huffman encoding today is often used as a "back-end" to
some other compression method. DEFLATE (PKZIP's
algorithm) and multimedia codecs such as JPEG and MP3
have a front-end model and quantization followed by
Huffman coding [1].

Huffman coding uses a specific method for choosing the
representation for each symbol. It results in a prefix code that
expresses the most common source characters using shorter
strings of bits.

Students: 1Miroslav Z. Manić and Ivan S. Nikolić are with the
Faculty of Electronic Engineering, Aleksandra Medvedeva 14, 18000
Nis, Serbia, E-mails: mmanic@elfak.ni.ac.rs,
slashdance007@gmail.com.

Mentors: 1Radomir Stanković and Dušan Gajić are with the
University of Niš, Faculty of Electronic Engineering, Aleksandra
Medvedeva 14, 18000 Niš, Serbia, E-mails:
dusan.gajic@elfak.ni.ac.rs, radomir.stankovic@gmail.com.

513

http://en.wikipedia.org/wiki/Data_compression
http://en.wikipedia.org/wiki/Algorithm
http://en.wikipedia.org/wiki/Prefix_code

First that we need to resolve before we start is "What is a
character?". For our implementation a character is any 8-bit
combination. In general, a Huffman code for an N characters
alphabet, may yield symbols with a maximum code length of
N - 1.

The Huffman algorithm works by creating a binary tree of
nodes. These can be stored in a regular array. The size of
which depends on the number of symbols. A node can be
either a leaf node or an internal node. All nodes are leaf
nodes, which contain the symbol itself, the link to a parent
node which makes it easy to read the code (in reverse) starting
from a leaf node. Internal nodes contain symbol weight, links
to two child nodes and the link to a parent node. As a common
convention, bit '0' represents following the left child and bit '1'
represents following the right child. A Huffman tree that
omits unused symbols produces the most optimal code
lengths.

The process essentially begins with the leaf nodes
containing the probabilities of the symbol they represent, then
a new node whose children are the 2 nodes with smallest
probability is created, such that the new node's probability is
equal to the sum of the children's probability. With the
previous 2 nodes merged into one node and with the new node
being now considered, the procedure is repeated until only
one node remains, the Huffman tree. Detailed explanation of
this is given in [1]. Here is one example which shows how to
create Huffman tree. Given a 6 symbol alphabet with the
following symbol probabilities: A = 1, B = 2, C = 4, D = 8, E
= 16, F = 32. Step 1. Combine A and B into AB with a
probability of 3. Step 2. Combine AB and C into ABC with a
probability of 7. Step 3. Combine ABC and D into ABCD
with a probability of 15. Step 4. Combine ABCD and E into
ABCDE with a probability of 31. Step 5. Combine ABCDE
and F into ABCDEF with a probability of 63. Result is shown
on Fugure 1.

Fig.1 Tree results

Decoding

Generally, the process of decoding is simply a matter of
translating the stream of prefix codes to individual byte
values, usually by traversing the Huffman tree node by node
as each bit is read from the input stream. The Huffman tree
must be somehow reconstructed if we want to decode aor file.
In the simplest case, where character frequencies are fairly
predictable, the tree can be preconstructed. A naive approach

might be to prepend the frequency count of each character to
the compression stream. Another method is to simply
prepend the Huffman tree, bit by bit, to the output stream. For
example, assuming that the value of 0 represents a parent node
and 1 a leaf node, whenever the latter is encountered the tree
building routine simply reads the next 8 bits to determine the
character value of that particular leaf. The process continues
recursively until the last leaf node is reached; at that point, the
Huffman tree will thus be faithfully reconstructed. The
overhead using such a method ranges from roughly 2 to 320
bytes. For details see article given in [1]. On the end, the
decoding must be able to determine when to stop producing
output. In section 3 we presented technic that we used for
decompression in our application [5]. Before we see the
experimental results for our application, we should be first
introduced to the architecture of application and how it works
under the hood.

III. ARCHITECTURE AND IMPLEMENTATION OF

HED

HED application is developed in C#. We used Visual
Studio 2010 and .NET Framework 3.5. This is powerfull tool
for making applications which have really good design and
which works in real time with low lag.

The main task of Huffman Encoder – Decoder (that we
named HED application) is compression of text files. Our
version of application has decoder, so you can decode file
which is encoded with HED and which has no losses.

Design for application was made using Adobe Photoshop.
Specifically, we used Microsoft Visual Studio 2010
professional, with .net framevork3.5. Adobe Photoshop was
used to design the program and the algorithm is implemented
in C#. Application is designed to simulate the Windows Aero
interface. Following the example of Microsoft Office wizard
to help, we created a robot that appears during the operation
of the application and asks the user to simply click it toget
help for HED application.

Fig.2 Help Wizard

HED applications can be divided into several units. Based

on the Huffman algorithm and its modes, the first thing the
program has to do is to count the characters which appear in
the entered text. This counter is the first important unit in the
HED application. In addition, it makes a Huffman tree. It also

514

http://en.wikipedia.org/wiki/Binary_tree
http://en.wikipedia.org/wiki/Array_data_type
http://en.wikipedia.org/wiki/Leaf_node
http://en.wikipedia.org/wiki/Internal_node

makes code for all the different characters that appear in the
entered text. When the application has the code it may start
coding.

515

HED application is made to do compression, called
encoding, and also the decompression or decoding of already
compressed text. Decoding is implemented with two
functions. The first function reads file header which contains
data required for decompression and then makes Huffman
tree. It’s Based on the tree. Compressed data is stored in the
rest of the file. The second group of functions perform
decompression.

Fig.3 Application interface

First function of the HED application performs counting of

different characters which appear in the input text. It consists
of “for loops” which do counting in just one pass.This is one
of reasons why this program is so fast. The number of
character occurrences is remembered in a row, and the
characters that appear in the input text of this function are
remembered in the second row. Application uses this rows
during labor. Building of the Huffman tree is performed by
several functions related to the entity. This tree is used for
creating the character codes. Each tree node represents a data
structure and contains the character and number of its
occurrences. One of these functions is used to insert the node
to the right place, the second is used to create a new node
based on two adjacent nodes.Making accurate Haffman tree is
very important because function read character codes used for
encoding from it.

Creating codes is perform by special functions. She moves
through Haffman tree recursively calls itself and remember in
a series of codes based on Haffman algorithm. Codes are
stored as a string, but only temporarily. During encoding,
these codes are converted to a sequence of bits. This
conversion is done with a special function.

This works on the principle of logical shifting buffer to the
left. If the input string (a sequence of 0 or 1) logic 1, the
functions other than shift to the left adds a 1 at the endof the
buffer, if the input string 0 then just shift the contents of the
buffer left. Enteringinto the buffer is complete when the
buffer is full rapport, when write 8 bits. This function is used
for coding the input text. Coding performs a function that
reads character by character from text input, read itscode,
converts it into a series of bits and stored in the output
file.Switch code that is remembered as a string into a
sequence of bits perform functions which we write because C
programming language does not support working with bits.
This function returns one byte witch is through the buffer

stored in the output file.Compression is also performed one-
pass through to enter text.

Decompression performed reverse work than the work
which is performed by compression. Since some data that are
used in the compression is also required for decompression,
we must remember them in the outputfile.This part of the file
is called a header. It remembers all the characters that appear
in the coded text and the number of occurrences (frequency)
of these characters. So that all characters were included they
must be remembered in UNICODE code system, so each
character in the header occupies 2 bytes.The number of
occurrences of character is an integer and takes a byte in
header file.These data are important because we need to have
the decoding Huffman tree from which we read the character
of the input code.Creating a Huffman tree performs a function
that is very similar to that as incompression, because their
input data practically are the same.The very process of
decoding performs a function on the basis of already made
huffnan trees and coded data, reading the characters and
remember them in the output text file.Here we have a function
which for easy work turning sequence of bits in the string.

Fig.3 Compression statistics

IV. PRACTICAL EXPERIMENTS AND RESULTS

For testing our application we have used different types of
textual files. We used txt, .h, .cpp, HTML, XML, etc. Results
shows that there is no matter which format of text document
is, it works with all of file formats we mention above, and size
of output file does not depend on type of text file. Size of
output file directly depends on size of input file. On the other
side, characteristics if letters in text have higher frequency is
one of the most important reasons why output file is smaller
or bigger. So, we have made some txt files and tested our
application using them. Some of them have few characters,
other have different characters. In the following table we can
see some results how output file depends on number of
characters and frequency of its occurence.

TABLE I
VALUES IN BYTES AND NUMBER OF CHARACTERS FOR INPUT AND OUTPUT FILES AND COMPRESSION RATE AND TIME

ELAPSED FOR OUTPUT FILES

File
No.

Input file/Output file [B]
Input No.diferent char./All

characters
Compression ratio

[%]
Time

1. 5/14 2/2 280 11 ms
2. 10/28 4/10 280 12 ms
3. 10/74 10/10 740 21 ms
4. 21/124 15/21 590 27 ms
5. 39/44 5/39 112 12 ms
6. 1.926/1.617 49/1.926 83 140 ms
7. 11.529/9.062 86/11.529 78 334 ms
8. 103.555/52.709 116/103.408 50 839 ms
9. 3.362.038/963.113 90/1.681.018 28 5.061 ms

10. 4.963.584/2.453.939 116/4.963.584 49 17.713 ms
11. 65.078.895/37.621.271 116/64.851.952 57 3 min 48 s
12. 193.547.880/96.253.836 22/193.547.880 49 3 min 11 s

Now we will discuss results that we got. This is tasted on
Intel Dual core processor and it’s important for following
discussion about duration of this operations. First off all, we
can notice that size of output file depends of number of
different characters. In file 1 we have only 2 different
characters and whole file have only 2 characters. So we can
see that result for this is not so good, because output file is
bigger than input file. Compression ratio here is 280% (Table
1).

When we have same number of different characters and all
characters like in file 3, results are worst and output file is
much bigger then input. In file in which number of all
characters is more bigger then number of different characters,
compression ratio is better (112 %). This is because codes for
characters are shorter then ASCII code, and they occurs
frequently. We must mention again that output files should be
smaller if we didn’t used header. Better results are in file 6
(112% compression ratio) because we have larger number of
characters then number of different characters. You can see
this in other files (7 - 12). Compression ratio is greater and
when number of all characters increases. We tasted
application with maximum 116 different characters, and best
result is in file 10 (49% compression ratio) which has
4.963.584 different characters. In table 2 we can see duration
of each compression process. We can notice that the best time
is for file 1, and the worst for file 12.

V. CONCLUSION

In this paper An Application for Text Encoding and
Decoding is proposed. It uses Huffman algorithm.
Experimental results shows that compression ratio depends on
ratio of number of different characters and number of all
characters in file; when number of different characters is
lower, and number of all characters is higher, results are
better. Time for compression is lower when we have less
number of all characters.

This application can not be compared with other
commercial programs that doing encoding and decoding data.
It can be used in educational purposes to show students how
Huffman algorithm works.

REFERENCES

[1] The Data Compression Book 2nd edition by Mark Nelson and
Jean-loup Gailly, M&T Books, New York, NY 1995

[2] Text Compression by Timothy C. Bell, John G. Clearly and Ian
H. Witten 1990

[3] Data Compression: The Complete Reference by David Salomon
2nd edition, 2000

[4] http://www.cs.cf.ac.uk/Dave/Multimedia/node210.html, website
last visited on 13/04/2011.

[5] http://www.cs.auckland.ac.nz/~jmor159/PLDS210/huffman.htm
l, website last visited on 14/04/2011.

[6] http://www.huffmancoding.com/my-family/my-uncle/huffman-
algorithm, website last visited on 12/04/2011.

516

http://www.cs.cf.ac.uk/Dave/Multimedia/node210.html
http://www.cs.auckland.ac.nz/%7Ejmor159/PLDS210/huffman.html
http://www.cs.auckland.ac.nz/%7Ejmor159/PLDS210/huffman.html
http://www.huffmancoding.com/my-family/my-uncle/huffman-algorithm
http://www.huffmancoding.com/my-family/my-uncle/huffman-algorithm

