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Abstract - FFT is one of the most important algorithms in 
signal processing and computing. The group theoretical 
approach to Fourier analysis is useful in solving several 
optimization problems in these areas. For practical application of 
this approach, the corresponding FFT algorithms on finite 
groups are required. It is interesting to explore how different 
group choice at various steps of FFT affects computational 
efficiency and function spectra. This paper presents a C/C++ 
implementation of FFT over finite not necessarily Abelian 
groups allowing to freely choose the underlying group structure 
at each step of the FFT. We also provide results and conclusions 
drawn from experiments over a set of benchmark functions 
viewed as functions on different groups with group 
representations selected in different fields, including the field of 
complex numbers and few preselected finite fields.  These results 
could be helpful in tracing directions for further research in this 
area. 
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I. INTRODUCTION 

Fourier analysis is the cornerstone of signal processing and 
system analysis and, hence, has many applications in modern 
computational problems. Classical Fourier analysis is defined 
on the unit circle, on the integers and on the real line. A vast 
number of different fast algorithms have been developed for 
such theoretical settings [1]. 

Group theoretical approach to Fourier analysis has been 
implicit in many of the classical works and its implicit 
introduction into the field produced many important 
theoretical conclusions. This approach creates a powerful 
platform for the unified approach when applying Fourier 
transform on signals defined on different algebraic structures 
that reflect the properties of the modelled phenomenon. 

Methods based only on finite Abelian groups has provided 
many successful applications in signal processing, however, 
recent studies have shown that this approach does not always 
yield best performance of related algorithms.[2] Hence, non-
Abelian groups have been introduced in order to supplement 

for disadvantages of the former approach. 
In this work we investigate how choice of algebraic 

structures influences performance of the FFT and sparsity of 
the Fourier spectra. 

II. FOURIER TRANSFORM ON FINITE GROUPS 

The Fourier transform on finite Abelian and non-Abelian 
groups can be studied in a unique setting with a classical 
Fourier transform in the frame of abstract harmonic analysis 
[2].  

From the mathematical topology point of view, the real line 
R is a locally compact Abelian group and the theory of 
Fourier analysis can been extended to such groups if the 
exponential functions used in Fourier analysis on R are 
replaced by the group representations [2]. 

Def. 1. Finite-dimensional representation of a finite group 
G over a field P is a homomorphism 

),(: PnGLGR   

where GL(n,P) is the general linear group, i.e., the group of (n 
×n) invertible matrices (n is a natural number) with respect to 
matrix multiplication, with entries in a field P. 

It can be proven, see for instance [2], that if representations 
are unitary and irreducible that they form a complete 
orthogonal system and, hence, the Fourier transform for a 
function f on a group G of order g can be defined as 

follows:  
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where Sf(w) is the Fourier spectrum for f, Rw are the group 
representations of orders rw, K is the dimension of the dual 
object for G, and Tr(X) denotes the trace of a matrix X.   

In matrix notation, the Fourier transform pair defined by (1) 
and (2) can be Error! Bookmark not defined.expressed as 
follows [2]: 

Given a function f on a group G of order g by the function 
vector f=[f(0),…,f(g-1)]T. The Fourier spectrum for f , 

presented as a matrix-valued vector [Sf]=[Sf(0),…,Sf(K-1)]T 
ned as  

re
is defi

      1 1[ ] [ ]f g   ,f S R                                                (3) 

where [R]-1 = [bsq], with bsq= rwRs
-1(q), s={0,1,…,K-1}, 

q={0,1,…,g-1}. The inverse transform is defined as  

Student authors:  
1Igor Mihajlović, Milan Marković, Nenad Andrejević, and Milan 

Djokić are with the Faculty of Electronic Engineering, Aleksandra 
Medvedeva 14, 18000 Niš, Serbia, E-mails: 
igor.mihajlovic1987@gmail.com, milan@elfak.rs, 
neca.87@gmail.com, Milan.djokic.87@gmail.com . 

 
Mentors: 
2Radomir Stanković and Dušan Gajić are with the Faculty of 

Electronic Engineering, Aleksandra Medvedeva 14, 18000 Niš, 
Serbia, E-mails: radomir.stankovic@gmail.com, 
dusan.gajic@elfak.ni.ac.rs. 

       [ ] [ ]ff R S                                                           (4) 

517 

mailto:igor.mihajlovic1987@gmail.com
mailto:milan@elfak.rs
mailto:neca.87@gmail.com
mailto:radomir.stankovic@gmail.com


where  and denote the generalized multiplications 
permitting dealing with vectors and matrices whose entries are 
matrices defined in [2], and [R]=[aij],  with aij = Rj(i), 
i={0,1,…,g-1}, j={0,1,…,K-1}. 

 

The matrix expression of the Fourier transform is 
important, since permits an elegant way towards devising the 
fast computing methods discussed in this paper.   

III. FAST ALGORITHMS FOR COMPUTING THE 

FOURIER TRANSFORM 

The fast Fourier transform (FFT) is a method for computing 
the Discrete Fourier transform (DFT) efficiently in terms of 
space and time [3].  

This algorithm is based upon the factorization of the DFT 
transform matrix into the product of sparse matrices, each 
matrix describing a step in the FFT. The same approach can 
be used to devise fast algorithms for the Fourier transforms on 
finite groups, see for instance [2] and references therein.  It is 
assume that the domain group G can be written as the direct 
product of groups Gi, i={0,1,…,n-1} of smaller orders. Then, 
the Fourier transform on G can be performed as n Fourier 
transforms on the constituent groups Gi. This could be 
considered as a restriction of the FFT from the whole group G 
to the FFT of its subgroups Gi. It follows that the i-th factor 
matrix can be represented as the Kronecker product of the 
Fourier transformation matrix on Gi of order gi at the i-th 
position and the identity matrices of orders gj, j 
∈{1,...,n}\{i},at all other positions into the Kronecker 
product. The same approach can be extended to non-Abelian 
groups using generalized matrix multiplications as described 
in [2]. 

The matrix [R] in the definition of the Fourier transform on 
finite non-Abelian groups is the matrix of unitary irreducible 
representations of G over P [2]. Matrix [R] and also its 
inverse [R]-1 can be generated as Kronecker products of (Ki 
×gi) unitary irreducible representations of subgroups. 
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This matrix can be can be further factorized into 
elementwise Kronecker product of n sparse factors 
[Ci], i ∈ {1,…,n} as 
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and Ia×a is an (a×a) identity matrix. 
Although the (a) classical FFT algorithm can be derived in 

a similar fashion, there are some important differences with 
respect to dealing with finite non-Abelian group. Elements of 
vectors are not just scalars but could also be square matrices 
depending on (of) the representation of the corresponding 

non-Abelian group. Therefore, the number of representations 
of a non-Abelian group is always smaller than the order of 
that group. This implies that the vector size in different steps 
of FFT varies. 

Fast algorithm is performed in n steps where n is 
(represents) the number of subgroups of G. The time 
complexity of each step is linear with the vector size. 

IV. IMPLEMENTATION 

We implemented the algorithm for computing the Fourier 
spectrum on finite non-necessarily Abelian groups using the 
C++ programming language. Since vector elements can be 
either scalars or matrices, we resorted to usage of OO 
techniques by abstracting the vector element as a class 
Element [Complex] on which we define the generalized 
multiplication operator as stated in the previous section. 

Numbers of subgroups as well as the subgroups themselves 
for the each step could be chosen by the user, giving the 
chance to find the best suited decomposition for the problem 
at hand. Some of the subgroups implemented include: the  
additive groups of integers Z2, Z4, Z8, the symmetric group 
of permutations of order three S3, and the quaternion group 
Q8 [4]. This is implemented as a quad pointer to the object of 
the class element which represents the n-element vector of the 
subgroup transformation matrices with entries in the class 
Element. Since the size of vector during the different steps 
varies, we need to maintain the current vector size. In order to 
achieve the optimal space complexity in each step, memory is 
dynamically allocated and later de-allocated.  The products of 

sizes of the left and the right identity matrices  defined by 

(8) are also maintained for fast multiplication of sparse 
matrices.  

i
jS

The algorithm for computing the Fourier spectrum can be 
specified in the pseudo code as:  

 
FFT(N,g,K,V,NV) 
1. l ← 1 
2. for i ← 1 to N-1 
3.    l ← l*g[i] 
4. d ← 1 
5. NX ← NV 
6. X ← V 
7. for i1 ← 0 to N-1 
8.   mat ← mats[i1] 
9.   NY ← NX*K[i1]/g[i1] 
10.   KX=NX/l 
11.   KY=NY/l 
12.   for i2 ← 0 to l-1 
13.     for i3 ← 0 to d-1 
14.       for I ← 0 to K[i1]-1 
15.         Y[i2*KY+i*d+i3] ← 0 
16.         for j ← 0 to g[i1]-1 
17.           Y[i2*KY+i*d+i3]←mat[i][j]* X[i2*KX+j*d+i3]  

+  Y[i2*KY+i*d+i3] 
18.     l←l/g[i1+1] 
19.     d←d*K[1i] 
20.     X ← Y 
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21.     NX ← NY 
 
In the algorithm above N represent the number of steps i.e. 

the number of subgroups G is factored into, g and K represent 
arrays of sizes of those subgroups and their dual objects [2] 
respectively, while V is the input vector and NV  its size.  As 
mentioned above, sizes of left and right identity matrices are 

represented with l and d which are set to  and 1 

respectively in lines 1-4. A temporary vector X of size NX is 
used for containment at various steps and is initially set to V 
and NV at lines 5-6. In lines 7-21, the Fourier spectrum is 
computed in n steps. In lines 8-9 the ith transformation matrix 
is loaded and the corresponding size of the vector  Y is set. 
Each step could be performed by dividing the input vector 
into l parts each consisting of d interlacing g[i1] × K[i1] 
butterflies.  






1

1

][
n

i

ig

In lines 12-17, the algorithm iterates through the parts and 
then trough butterflies performing the ith transformation on the 
appropriate vector elements. In lines 18-19, new values for l 
and d are calculated. 

V. EXPERIMENTAL RESULTS 

Asymptotic time complexity of FFT is O(nlog n) where n is 
the size of the input vector. Since the complexity of FFT over 
vectors does not depend on the values f vector entries, the 
computations are performed over randomly generated integer 
vectors of different sizes.  

In the following table we present the running time of 
algorithm depending on the input size when the domain group 
G is factored in the product of subgroups Z2. 
 

TABLE I 
RUNNING TIME COMPARISON WITH SAME FACTORING AND DIFFERENT 

VECTOR SIZES.  

Input vector size Running time [ms] 
32 2 
128 15 
256 16 
512 31 

1024 31 
2048 93 
4096 203 
8192 468 

16384 1061 
Next we present the running time of algorithm depending 

on the input size when factoring the froup to the subgroups Q8 
 

TABLE II 
RUNNING TIME COMPARISON WITH SAME FACTORING AND DIFFERENT 

VECTOR SIZES. 

Input vector size Running time [ms] 
8 0 

64 1 
512 31 

4096 156 

32768 1314 
262144 12324 

The same results will be shown graphically it the figures 1 
and 2 for better running time comparison of factoring same 
vectors over different subgroups. 
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Fig.1. Z2 factoring running time. 

 
 

Q8 factoring running time
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Fig.2. Q8 factoring running time. 

 
 
As shown in the Figures 1 and 2, with our non-Abelian 

algorithm the asymptotic complexity remains the same, but 
with proper group choice, number of operations can be 
dramatically reduced. 

 
We present the obtained results of running time over the 

same vector of size 214 while using different factoring. 
 
 

TABLE III 
RUNNING TIME COMPARISON WITH DIFFERENT FACTORING AND SAME 

VECTOR SIZES. 

Factoring Running time [ms] 
Z2

14 1061 
Z8

4×Z2
2 1029 

Z4
7 780 

Q8
2×Z8

2×Z4 718 
Q8

4×Z2
2 624 

 
Apart from the running time, different factoring also affects 

the sparseness of the function spectra.  
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We present the obtained results of non-zero elements over 
the same vector of size 25 while using different factoring. 

 
 

TABLE IV 
COMPARISON OF NON-ZERO ELEMENTS OVER DIFFERENT FACTORING 

AND SAME VECTOR. 

Factoring Percentage of non-zero 
elements 

Q8×Z2
2 90% 

Z2×Z8 53.13% 
Z8×Z4 31.20% 
Z2×Z4

2 15.62% 
Z4×Z2

3 9.37% 
Z2

5 6.25% 

VI. CONCLUSION 

Group theoretical approach provides us with uniform 
treatment of signals defined over different algebraic 
structures. The first part of our work was to implement FFT 
when the user can arbitrary select factorization into 
subgroups. The second part was devoted to experimentally 

analyze how different factoring affects output data and time 
complexity of the algorithm.  

As shown above, by a careful choice of subgroups we can 
obtain better running time and spectra sparseness. Apart of 
that different group choices can provide us with various 
perspectives of function properties. 

The implementation can be further improved by adding 
more group choices and by code optimization of calculations 
at each step. 
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