

Implementation of the Generalized FFT on Finite Groups
Student authors: Igor Mihajlović1, Milan Marković1, Nenad Andrejević1, and

Milan Djokić1
Mentors: Radomir Stanković2 and Dušan Gajić2

Abstract - FFT is one of the most important algorithms in
signal processing and computing. The group theoretical
approach to Fourier analysis is useful in solving several
optimization problems in these areas. For practical application of
this approach, the corresponding FFT algorithms on finite
groups are required. It is interesting to explore how different
group choice at various steps of FFT affects computational
efficiency and function spectra. This paper presents a C/C++
implementation of FFT over finite not necessarily Abelian
groups allowing to freely choose the underlying group structure
at each step of the FFT. We also provide results and conclusions
drawn from experiments over a set of benchmark functions
viewed as functions on different groups with group
representations selected in different fields, including the field of
complex numbers and few preselected finite fields. These results
could be helpful in tracing directions for further research in this
area.

Keywords – FFT, C/C++ implementation, finite non-Abelian
groups, experimental results.

I. INTRODUCTION

Fourier analysis is the cornerstone of signal processing and
system analysis and, hence, has many applications in modern
computational problems. Classical Fourier analysis is defined
on the unit circle, on the integers and on the real line. A vast
number of different fast algorithms have been developed for
such theoretical settings [1].

Group theoretical approach to Fourier analysis has been
implicit in many of the classical works and its implicit
introduction into the field produced many important
theoretical conclusions. This approach creates a powerful
platform for the unified approach when applying Fourier
transform on signals defined on different algebraic structures
that reflect the properties of the modelled phenomenon.

Methods based only on finite Abelian groups has provided
many successful applications in signal processing, however,
recent studies have shown that this approach does not always
yield best performance of related algorithms.[2] Hence, non-
Abelian groups have been introduced in order to supplement

for disadvantages of the former approach.
In this work we investigate how choice of algebraic

structures influences performance of the FFT and sparsity of
the Fourier spectra.

II. FOURIER TRANSFORM ON FINITE GROUPS

The Fourier transform on finite Abelian and non-Abelian
groups can be studied in a unique setting with a classical
Fourier transform in the frame of abstract harmonic analysis
[2].

From the mathematical topology point of view, the real line
R is a locally compact Abelian group and the theory of
Fourier analysis can been extended to such groups if the
exponential functions used in Fourier analysis on R are
replaced by the group representations [2].

Def. 1. Finite-dimensional representation of a finite group
G over a field P is a homomorphism

),(: PnGLGR 

where GL(n,P) is the general linear group, i.e., the group of (n
×n) invertible matrices (n is a natural number) with respect to
matrix multiplication, with entries in a field P.

It can be proven, see for instance [2], that if representations
are unitary and irreducible that they form a complete
orthogonal system and, hence, the Fourier transform for a
function f on a group G of order g can be defined as

follows:

 (1)
1

1

0

() () (),
g

f w w
u

w r g f u R u






 S 1

1

0

() (() ())
K

f w
w

f x Tr w x




  S R , (2)

where Sf(w) is the Fourier spectrum for f, Rw are the group
representations of orders rw, K is the dimension of the dual
object for G, and Tr(X) denotes the trace of a matrix X.

In matrix notation, the Fourier transform pair defined by (1)
and (2) can be Error! Bookmark not defined.expressed as
follows [2]:

Given a function f on a group G of order g by the function
vector f=[f(0),…,f(g-1)]T. The Fourier spectrum for f ,

presented as a matrix-valued vector [Sf]=[Sf(0),…,Sf(K-1)]T
ned as

re
is defi

 1 1[] []f g   ,f S R (3)

where [R]-1 = [bsq], with bsq= rwRs
-1(q), s={0,1,…,K-1},

q={0,1,…,g-1}. The inverse transform is defined as

Student authors:
1Igor Mihajlović, Milan Marković, Nenad Andrejević, and Milan

Djokić are with the Faculty of Electronic Engineering, Aleksandra
Medvedeva 14, 18000 Niš, Serbia, E-mails:
igor.mihajlovic1987@gmail.com, milan@elfak.rs,
neca.87@gmail.com, Milan.djokic.87@gmail.com .

Mentors:
2Radomir Stanković and Dušan Gajić are with the Faculty of

Electronic Engineering, Aleksandra Medvedeva 14, 18000 Niš,
Serbia, E-mails: radomir.stankovic@gmail.com,
dusan.gajic@elfak.ni.ac.rs.

 [] []ff R S (4)

517

mailto:igor.mihajlovic1987@gmail.com
mailto:milan@elfak.rs
mailto:neca.87@gmail.com
mailto:radomir.stankovic@gmail.com

where and denote the generalized multiplications
permitting dealing with vectors and matrices whose entries are
matrices defined in [2], and [R]=[aij], with aij = Rj(i),
i={0,1,…,g-1}, j={0,1,…,K-1}.

 

The matrix expression of the Fourier transform is
important, since permits an elegant way towards devising the
fast computing methods discussed in this paper.

III. FAST ALGORITHMS FOR COMPUTING THE

FOURIER TRANSFORM

The fast Fourier transform (FFT) is a method for computing
the Discrete Fourier transform (DFT) efficiently in terms of
space and time [3].

This algorithm is based upon the factorization of the DFT
transform matrix into the product of sparse matrices, each
matrix describing a step in the FFT. The same approach can
be used to devise fast algorithms for the Fourier transforms on
finite groups, see for instance [2] and references therein. It is
assume that the domain group G can be written as the direct
product of groups Gi, i={0,1,…,n-1} of smaller orders. Then,
the Fourier transform on G can be performed as n Fourier
transforms on the constituent groups Gi. This could be
considered as a restriction of the FFT from the whole group G
to the FFT of its subgroups Gi. It follows that the i-th factor
matrix can be represented as the Kronecker product of the
Fourier transformation matrix on Gi of order gi at the i-th
position and the identity matrices of orders gj, j
∈{1,...,n}\{i},at all other positions into the Kronecker
product. The same approach can be extended to non-Abelian
groups using generalized matrix multiplications as described
in [2].

The matrix [R] in the definition of the Fourier transform on
finite non-Abelian groups is the matrix of unitary irreducible
representations of G over P [2]. Matrix [R] and also its
inverse [R]-1 can be generated as Kronecker products of (Ki
×gi) unitary irreducible representations of subgroups.

 (6)
1

[] []
n

ii
 R R

This matrix can be can be further factorized into
elementwise Kronecker product of n sparse factors
[Ci], i ∈ {1,…,n} as

 (7)
1

[] [], 1,....,
n

i i
jj

i


  C S n

where

()

1

()

,

[] [] ,

,

j j

j j

g g

i
j j

K K

j i

j i

j i








 
 

I

S R

I

 (8)

and Ia×a is an (a×a) identity matrix.
Although the (a) classical FFT algorithm can be derived in

a similar fashion, there are some important differences with
respect to dealing with finite non-Abelian group. Elements of
vectors are not just scalars but could also be square matrices
depending on (of) the representation of the corresponding

non-Abelian group. Therefore, the number of representations
of a non-Abelian group is always smaller than the order of
that group. This implies that the vector size in different steps
of FFT varies.

Fast algorithm is performed in n steps where n is
(represents) the number of subgroups of G. The time
complexity of each step is linear with the vector size.

IV. IMPLEMENTATION

We implemented the algorithm for computing the Fourier
spectrum on finite non-necessarily Abelian groups using the
C++ programming language. Since vector elements can be
either scalars or matrices, we resorted to usage of OO
techniques by abstracting the vector element as a class
Element [Complex] on which we define the generalized
multiplication operator as stated in the previous section.

Numbers of subgroups as well as the subgroups themselves
for the each step could be chosen by the user, giving the
chance to find the best suited decomposition for the problem
at hand. Some of the subgroups implemented include: the
additive groups of integers Z2, Z4, Z8, the symmetric group
of permutations of order three S3, and the quaternion group
Q8 [4]. This is implemented as a quad pointer to the object of
the class element which represents the n-element vector of the
subgroup transformation matrices with entries in the class
Element. Since the size of vector during the different steps
varies, we need to maintain the current vector size. In order to
achieve the optimal space complexity in each step, memory is
dynamically allocated and later de-allocated. The products of

sizes of the left and the right identity matrices defined by

(8) are also maintained for fast multiplication of sparse
matrices.

i
jS

The algorithm for computing the Fourier spectrum can be
specified in the pseudo code as:

FFT(N,g,K,V,NV)
1. l ← 1
2. for i ← 1 to N-1
3. l ← l*g[i]
4. d ← 1
5. NX ← NV
6. X ← V
7. for i1 ← 0 to N-1
8. mat ← mats[i1]
9. NY ← NX*K[i1]/g[i1]
10. KX=NX/l
11. KY=NY/l
12. for i2 ← 0 to l-1
13. for i3 ← 0 to d-1
14. for I ← 0 to K[i1]-1
15. Y[i2*KY+i*d+i3] ← 0
16. for j ← 0 to g[i1]-1
17. Y[i2*KY+i*d+i3]←mat[i][j]* X[i2*KX+j*d+i3]

+ Y[i2*KY+i*d+i3]
18. l←l/g[i1+1]
19. d←d*K[1i]
20. X ← Y

518

21. NX ← NY

In the algorithm above N represent the number of steps i.e.

the number of subgroups G is factored into, g and K represent
arrays of sizes of those subgroups and their dual objects [2]
respectively, while V is the input vector and NV its size. As
mentioned above, sizes of left and right identity matrices are

represented with l and d which are set to and 1

respectively in lines 1-4. A temporary vector X of size NX is
used for containment at various steps and is initially set to V
and NV at lines 5-6. In lines 7-21, the Fourier spectrum is
computed in n steps. In lines 8-9 the ith transformation matrix
is loaded and the corresponding size of the vector Y is set.
Each step could be performed by dividing the input vector
into l parts each consisting of d interlacing g[i1] × K[i1]
butterflies.






1

1

][
n

i

ig

In lines 12-17, the algorithm iterates through the parts and
then trough butterflies performing the ith transformation on the
appropriate vector elements. In lines 18-19, new values for l
and d are calculated.

V. EXPERIMENTAL RESULTS

Asymptotic time complexity of FFT is O(nlog n) where n is
the size of the input vector. Since the complexity of FFT over
vectors does not depend on the values f vector entries, the
computations are performed over randomly generated integer
vectors of different sizes.

In the following table we present the running time of
algorithm depending on the input size when the domain group
G is factored in the product of subgroups Z2.

TABLE I
RUNNING TIME COMPARISON WITH SAME FACTORING AND DIFFERENT

VECTOR SIZES.

Input vector size Running time [ms]
32 2
128 15
256 16
512 31

1024 31
2048 93
4096 203
8192 468

16384 1061
Next we present the running time of algorithm depending

on the input size when factoring the froup to the subgroups Q8

TABLE II
RUNNING TIME COMPARISON WITH SAME FACTORING AND DIFFERENT

VECTOR SIZES.

Input vector size Running time [ms]
8 0

64 1
512 31

4096 156

32768 1314
262144 12324

The same results will be shown graphically it the figures 1
and 2 for better running time comparison of factoring same
vectors over different subgroups.

Z2 factoring running time

0

200

400

600

800

1000

1200

0 2000 4000 6000 8000 10000 12000 14000 16000 18000

vector size

ru
n

n
in

g
 t

im
e

[m
s]

Fig.1. Z2 factoring running time.

Q8 factoring running time

-2000

0

2000

4000

6000

8000

10000

12000

14000

0 50000 100000 150000 200000 250000 300000

Fig.2. Q8 factoring running time.

As shown in the Figures 1 and 2, with our non-Abelian

algorithm the asymptotic complexity remains the same, but
with proper group choice, number of operations can be
dramatically reduced.

We present the obtained results of running time over the

same vector of size 214 while using different factoring.

TABLE III
RUNNING TIME COMPARISON WITH DIFFERENT FACTORING AND SAME

VECTOR SIZES.

Factoring Running time [ms]
Z2

14 1061
Z8

4×Z2
2 1029

Z4
7 780

Q8
2×Z8

2×Z4 718
Q8

4×Z2
2 624

Apart from the running time, different factoring also affects

the sparseness of the function spectra.

519

520

We present the obtained results of non-zero elements over
the same vector of size 25 while using different factoring.

TABLE IV
COMPARISON OF NON-ZERO ELEMENTS OVER DIFFERENT FACTORING

AND SAME VECTOR.

Factoring Percentage of non-zero
elements

Q8×Z2
2 90%

Z2×Z8 53.13%
Z8×Z4 31.20%
Z2×Z4

2 15.62%
Z4×Z2

3 9.37%
Z2

5 6.25%

VI. CONCLUSION

Group theoretical approach provides us with uniform
treatment of signals defined over different algebraic
structures. The first part of our work was to implement FFT
when the user can arbitrary select factorization into
subgroups. The second part was devoted to experimentally

analyze how different factoring affects output data and time
complexity of the algorithm.

As shown above, by a careful choice of subgroups we can
obtain better running time and spectra sparseness. Apart of
that different group choices can provide us with various
perspectives of function properties.

The implementation can be further improved by adding
more group choices and by code optimization of calculations
at each step.

REFERENCES

[1] W. Rudin, Fourier Analysis on Groups, New York, Interscience
Publishers, 1962.

[2] R. S. Stankovic, C. Moraga, J.T. Astola, Applications of Fourier
Analysis on Finite non-Abelian Groups in Signal Processing
and System Design, New York, John Wiley & Sons, 2005.

[3] C. V. Loan, Computational Frameworks for the Fast Fourier
Transform, Society for Industrial Mathematics, 1992.

[4] Rober B. Ash, Basic Abstract Algebra: For Graduate Students
and Advanced Undergraduates, Dover books on Mathematics,
2000.

