

Comparative Analysis of C/C++, Java, Python, and LISP
Implementations of Greedy Algorithms for the Graph

Coloring Problem
Student authors: Nenad Mančević1, Igor Mihajlović1, Nenad Andrejević1, and

Milan Đokić1
Mentors: Radomir Stanković2 and Dušan Gajić2

Abstract – Graph coloring is a very interesting NP-complete
problem. Coloring of a simple graph is the assignment of a color
to each vertex of the graph so that no two adjacent vertices are
assigned the same color. It is interesting to compare
performances of different variations of the greedy algorithm for
graph coloring depending on parameters and vertex order. Also,
it is interesting to determine how much the implementation in
different programming languages affects performances of the
algorithm. In this paper, we present implementations of three
variations of greedy algorithm for graph coloring in several
programming languages including C/C++, Java, Lisp, and
Python, as well as results and conclusions drawn from
experiments. These results could be helpful in tracing directions
for further research towards efficient implementation of various
algorithms for NP-complete problems.

Keywords – greedy algorithm, graph coloring problem, NP-
complete problems, programming languages.

I. INTRODUCTION

Graph theory, as one the most important fields in discrete
mathematics, has many applications in modern computer
science. During its rich evolution, graph theory has produced
great deal of many interesting problems. Many of those
problems are NP-complete, including one of the most popular
problems – graph coloring.

In graph theory, we can define a vertex coloring of a graph
G = (V,E) as a map c: V → S such that c(v) ≠ c(w) whenever v
and w are adjacent. The elements of the set S are called the
available colors [1]. The minimum number of unique colors
that we could use to paint graph vertices is called a Chromatic
number χ(G). Similarly, the minimum number of unique
colors used in coloring the edges so that two adjacent edges
don’t share the same color gives a Chromatic index.

In this paper, we will focus on vertex coloring problem
which belongs to a class of NP-complete problems.

Since this problem is NP-complete, many algorithms have

been proposed to obtain approximate colorings in reasonable
time. Those algorithms can be categorized in the following
classes: greedy, partition, clique, Zykov and others [2].

 In the following sections we will further present three
variations from a class of Greedy algorithms. We will later
discuss their software implementations in four different
programming languages including C/C++, Java, Python and
LISP. Finally we will show experimental results, obtained by
running these implementations on random generated graphs,
presenting time efficiency over different programming
languages and computed chromatic number using different
algorithms.

II. GREEDY ALGORITHMS

One of the simplest methods for coloring a graph is by
using a greedy approach. This approach consists of the
following:

Given a graph G = (V,E) and a fixed vertex enumeration
a0,a1, ... ,an:

c(a0) = 1
If a1, ..., ai-1 (i ≥ 1) have already received colors, let c(ai) be

the smallest color not yet used in the neighborhood of ai.
It could be shown that the number of colors used hugely

depends on the order of vertices. There are many heuristic
techniques for Greedy coloring. We will now present two
different methods for vertex ordering that could yield good
results in terms of chromatic number.

A. Largest degree ordering

Degree based ordering is one of the easiest methods for
coloring a graph. It provides a slightly better strategy than the
algorithm provided above which simply picks a vertex from
an arbitrary order [3].

Largest degree based ordering chooses a vertex with the
highest number of neighbors. Initially graph vertices are
sorted in a non-increasing order according to their degree after
which former algorithm is applied. This approach produces
better chromatic number but it's time consumable.

B. Saturation degree ordering

The algorithm DSATUR (Degree of Saturation) of Brelez
a sequential coloring algorithm with a dynamically [3] is

Student authors:
1Nenad Mančević, Igor Mihajlović, Nenad Andrejević, and Milan

Đokić are with the Faculty of Electronic Engineering, Aleksandra
Medvedeva 14, 18000 Nis, Serbia,
E-mails: manca@elfak.rs, igor.mihajlovic1987@gmail.com,
neca.87@gmail.com, Milan.djokic.87@gmail.com .

Mentors:
2Radomir Stanković and Dušan Gajić are with the Faculty of

Electronic Engineering, Aleksandra Medvedeva 14, 18000 Nis,
Serbia, E-mails: radomir.stankovic@gmail.com,
dusan.gajic@elfak.ni.ac.rs.

521

mailto:igor.mihajlovic1987@gmail.com
mailto:neca.87@gmail.com
mailto:radomir.stankovic@gmail.com

established order of the vertices. The degree of saturation of a
vertex u, degc(u), is the number of different colors at the
vertices adjacent to u. This algorithm at i-th step chooses the
not yet colored vertex with the largest degree of saturation.
Since degrees change dynamically through algorithm
iterations, we can conclude that it is even more time
consumable than the previous one.

III. SOFTWARE IMPLEMENTATIONS

We implemented above discussed algorithms using four
different programming languages. We will now present a
short pseudo-code [4] that is the basis for each of them and
then show particular implementation techniques in each of the
programming languages.

Color(V,E):
1. color[v[0]] = 1
2. for i ← 1 to |V|
3. do ColorsTaken [] ← 0
4. for each u V
5. do if (u,V[i]) E
6. ColorsTaken[color[u]] ←1
7. k ← 1
8. while ColorsTaken[k]=1
9. do k ←k+1
10 color[v[i]] = k

In line one first color is assigned to the first vertex. Lines 2-

10 algorithm iterates through the rest of the vertices. In line 3
ColorsTaken for current vertex is reseted to zero. In lines 4-6
neighbors list of current vertex is explored and colors assigned
to each of them are marked as taken. In lines 7 - 9 first non-
used color is chosen and assigned to current vertex in line 10.

Depending on the variation of the algorithm used input set
of vertices V is sorted accordingly.

A. C++ and Java implementations

An array of adjacency lists is used to represent graph
G.[5]The ith adjacency list is integer array of size d(i),which is
degree of vertex i, where each entry represents vertex adjacent
to i. Above given algorithm is used to color vertices. Merge-
sort [5] is used for sorting vertices in a non-increasing order
according to their degree. In DSATUR algorithm [3]
ColorsTaken matrix is used instead of array in former
algorithm where ColorsTaken(i,j) is equal to 1 if and only if
node i has neighbor colored with color j. In this way both the
smallest available color for vertex i, and its degree of
saturation could be easily calculated. For purpose of testing
random number generator is created which generates random
graphs with given number of vertices and edges.

Same logic was used for implementation of the above
algorithm in Java. To use all the benefits that Java offer,
adjacency list is represented using built-in data structure
ArrayList, encapsulated in class AdjacentList, which has easy
methods for adding and removing element from the list. For
vertices sorting Heap-sort was used [5]. Tests were performed

on same random generated graph parsed to fit input format of
given implementation.

B. LISP implementation

List of vertices is used to represent graph G. Vertices are
represented as a list, each containing vertex ID, its color and
list of adjacent vertices IDs. Algorithm given above is used to
color vertices. To sort vertices according to their degree
Merge-sort [5] is used. In its modified version, it sorts vertices
by their degree of saturation to determinate a vertex that will
be colored next in DSATUR algorithm [3].

C. Python implementation

For this implementation we used already existing library for
graph manipulation – networkx [6]. Adding set of edges to the
Graph structure creates graph. We use built-in methods for
manipulation with set of vertices. The aforementioned
algorithm in its adapted version is used to color vertices. To
sort the vertices, built-in quick-sort algorithm is used.

IV. EXPERIMENTAL RESULTS

We will now show obtained results from above mentioned
implementations. For purpose of testing random graph
generator was created which generates random graphs for a
given number of vertices and edges.

It is worth mentioning that the performance in terms of
chromatic number of the implemented algorithms will vary
due to different sorting algorithms used in different
programming languages.

In the next four tables we will show running times for C++,
Java, Python and LISP implementations considering different
algorithms and graph sizes, respectively. Finally the
comparison between the average chromatic numbers will be
shown, as well as the best performed implementation.

TABLE I

RUNNING TIME [MS] OF DIFFERENT ALGORITHMS ON VARIOUS GRAPH

SIZE USING C++ IMPLEMENTATION

Number
of

Vertices

Number
of

Edges

Naïve
Greedy

LDO DSATUR

1000 10000 0 0 16
1000 50000 0 4 16
1000 100000 0 8 18
5000 50000 0 8 162
5000 100000 0 16 172
5000 500000 31 32 193
5000 106 62 78 246

10000 105 15 31 671
10000 5*105 78 83 718
10000 106 125 140 796
10000 107 1373 1382 2718
20000 2*105 47 78 2527
20000 106 219 254 2543
20000 2*106 421 468 2730
20000 107 2122 2169 4633
20000 2*107 4228 4290 6254

522

 As it could be seen from the results running time of Naïve
Greedy varies a little from LDO while DSATUR has far
worse performance. On the other hand Naïve and LDO much
more depend on the number of edges than the DSATUR.

In Table II the running time results are given considering
the same test input on the same graphs as for the previous
implementation, but in Java.

TABLE II
RUNNING TIME [MS] OF DIFFERENT ALGORITHMS ON VARIOUS GRAPH

SIZE USING JAVA IMPLEMENTATION

Number
of

Vertices

Number
of

Edges

Naïve
Greedy

LDO DSATUR

1000 10000 52 53 75
1000 50000 30 39 41
1000 100000 31 38 42
5000 50000 33 47 325
5000 100000 34 58 320
5000 500000 48 69 391
5000 106 59 76 436

10000 105 71 91 1203
10000 5*105 86 106 1301
10000 106 88 112 1430
10000 107 213 245 NA
20000 2*105 221 248 NA
20000 106 255 285 NA
20000 2*106 257 278 NA
20000 107 369 417 NA

TABLE III

RUNNING TIME [MS] OF DIFFERENT ALGORITHMS ON VARIOUS GRAPH

SIZE USING PYTHON IMPLEMENTATION

Number
of

Vertices

Number
of

Edges

Naïve
Greedy

LDO DSATUR

500 5000 6 15 113
500 10000 12 12 120
500 25000 26 27 128

1000 50000 57 59 480
1000 100000 119 122 521
5000 50000 173 176 11169
5000 105 223 229 11572
5000 5*105 710 731 11613
5000 106 1520 1580 12077

10000 105 590 588 45161
10000 5*105 1156 1056 45480
10000 106 1794 1699 45766
20000 106 4011 4034 NA
20000 2*106 5415 7012 NA

From the experimental results in Java implementation we

can notice that the running time is not that much worse than in
C++. For example, for 20000 vertices and 107 edges give
much better running time in Java than in C++. However, Java
cannot compute chromatic number using DSATUR algorithm
for more than 10000 vertices and 106 edges due to memory
limitations.

TABLE IV
RUNNING TIME [MS] OF DIFFERENT ALGORITHMS ON VARIOUS GRAPH

SIZE USING LISP IMPLEMENTATION

Number

of
Vertices

Number
of

Edges

Naïve
Greedy

LDO DSATUR

500 20000 244 295 400
500 28000 442 493 672

1000 30000 623 661 1029
2000 11000 420 428 537
2000 25000 1101 932 1588
5000 33000 3342 3504 4760

10000 25000 7492 9250 10656

On the other hand Python’s implementation using already
built-in library performs considerable worse than Java and
C++. Maximum number of vertices and edges that this
implementation could handle on our test system was 20000
and 106, respectively. Also, the same rule applies as for C++
and Java implementations that the first two algorithms
perform much faster than the DSATUR algorithm.

Finally, LISP implementation gives the worst results.
Although it has dynamic typing as Python, it performed much
worse due to its recursive structure. That implies vertex
number limitation for our tests.

In Table V we show the average chromatic number
obtained from all three implementations for given test results,
performed on all three algorithms used.

TABLE V

AVERAGE CHROMATIC NUMBER FOR DIFFERENT IMPLEMENTATIONS

ON THREE ALGORITHMS

Number
of

Vertices

Number
of

Edges

Naïve
Greedy

LDO DSATUR

500 5000 11 7.6 7.6
500 10000 17 11.5 11.5
500 25000 31.5 21.8 22.5

1000 50000 31.6 30.3 29.1
1000 100000 54 51.3 51
5000 50000 11.33 10.8 9.8
5000 105 17 15.6 15.5
5000 5*105 51 49.3 47.8
5000 106 87.6 85 83.3

10000 105 11.8 10.5 10
10000 5*105 33 29.6 28.6
10000 106 51.3 48.3 47.6
20000 106 32 30 NA
20000 2*106 52 48.6 NA

From the Table V we observe that the LDO algorithm

performs the best comparing the runing time seen in Tables I,
II, III and IV. DSATUR algorithm is more time consuming
and does not provide the expected results. Hence, we can state
that from our tests LDO is recommended algorithm for greedy
graph coloring.

523

524

V. CONCLUSION

In this paper we presented a comparative analysis of four
different programming language implementations of three
variations of a greedy algorithm applied on the graph coloring
problem.

First we introduced graph coloring as an important field in
modern computer science and discussed different approaches
in solving this NP-complete problem. We presented greedy
coloring as one of the popular methods that gives good results
for most graphs. This paper shows three different variations of
basic greedy algorithm: Naïve greedy, largest degree ordering
and DSATUR.

Comparing the results obtained from all four
implementations, we can notice that C++ and Java gave the
best running times for most of our tested graphs, whereas
Python and LISP were considerably slower due to their

dynamic typing and interpreting nature of program execution.
We can conclude that the second algorithm produces the best
chromatic number in terms of time consumption for most
randomly generated graphs. LDO algorithm is not much
slower than the Naïve algorithm because it uses sorting
algorithms of O(nlogn) complexity.

REFERENCES

[1] Reinhard Diestel, Graph Theory, 2000.
[2] Joseph C. Culberson, “Iterated Greedy Graph Coloring and the

Difficulty Landscape”, Technical Report TR 92-07, June 1992.
[3] Walter Klotz, Graph Coloring Algorithms, 2002.
[4] James A. Anderson, Discrete Mathematics with Combinatorics,

2nd Edition, 2003.
[5] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest,

Clifford Stein, Introduction to algorithms, 2nd Edition, 2001.
[6] Networkx 1.4 Library (http://networkx.lanl.gov/), 10.04.2011.

