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Attractive Ways Forward to Maximise Capabilities 
of the FD-BPM Technique 

Dušan Ž. Djurdjević1 

Abstract – Attractive ways forward to maximise capabilities of 
FD-BPM technique in photonics and nano-photonics design are 
presented and discussed. Novel improved FD schemes and 
formulas, the Alternating-Direction Implicit scheme, the explicit 
DuFort-Frankel scheme, the complex Jacobi iterative method, 
the efficient three-dimensional wide-angle beam propagation 
methods, the use of preconditioners allowing the solution of 3D 
problems of interest in reasonable computer runtimes – are just 
some of the few novel approaches highlighted. 
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I. INTRODUCTION 

Beam propagation methods (BPM) stand as a standard and 
computationally efficient design tools used in integrated 
photonics and optoelectronics in the last decades. BPM is an 
approach for numerical solving of the paraxial approximation 
of an exact vector Helmholtz’s equation (also known as the 
Fresnel’s equation). Although BPM can be formulated in time 
domain as well, frequency domain BPM techniques are still 
dominant in photonics analysis allowing suitable results with 
low run-time and memory computer costs. 

The finite-difference beam propagation method (FD-BPM) 
is certainly the most popular BPM algorithm [1-3]. Since its 
first formulation in 1990 [4], the FD-BPM has undergone 
significant improvements, particularly during the last decade 
[5-7].  

The main feature of the original FD-BPM, the paraxial 
approximation, at the same time presents the crucial limitation 
of the algorithm. A remedy was found in the early 1990s when 
the wide-angle (WA) BPM algorithm using Padé series 
expansion of the square root operator were introduced [8]. So 
far, several WA-BPM algorithms have been suggested 
allowing significant improvements of the computational 
efficiency of the standard paraxial BPM technique. 

The FD-BPM is usually implemented in a rectangular co-
ordinate system and accordingly the accuracy of the method is 
affected by inevitable so-called staircase approximation. 
Namely, if the structure under analysis contains oblique or 
curved interfaces or when the structure is changing in the 
direction of the propagation, the dielectric boundaries are 
modelled with error causing serious problems and certain 
restrictions of the method. A remedy was found by using 
improved FD formulas, or by using co-ordinate systems, 
which exactly describe the geometry of the photonic device 

studied. Several, usually the non-orthogonal, co-ordinate 
systems were recently proposed as well as novel very efficient 
forms of improved FD formulas. 

The basic drawback of the three-dimensional (3D) implicit 
WA-BPM is its huge memory consumption and consequently 
lengthy computer runtimes. The way out has been sought 
during the last decade in the development of unconditionally 
stable Altering-Direction Implicit (ADI) schemes. ADI 
algorithms provide non-iterative solution and require less 
memory and computational time. One further attractive 
possibility is the use of the fast and unconditionally stable 
explicit BPM algorithms like the DuFort-Frankel (DFF) 
variant. The Spectral Collocation Method (SCM) is recently 
proposed to minimize memory storage and to offer highly 
accurate results [9]. The Fourier cosine BPM algorithm, based 
on simple and time efficient matrix calculations [10], deserves 
a particular attention. 

Iterative FD-BPM schemes designed to achieve higher 
accuracy in numerical simulations (fine FD meshes for 
modelling complex geometries, the use of higher order Padé 
approximation in the WA-BPM) tend to be time very 
consuming and often instable. A novel complex Jacobi 
iterative algorithm [11] and construction of suitable 
preconditioners can substantially improve the convergence 
and minimize computer runtime involved in simulations. 

Usage of the FD-BPM is not limited only for applications 
and devices in conventional integrated photonics; there are 
examples in the very recent literature about its possible 
application in the design of modern photonic devices, such as 
photonic crystals fibers, plasmonics, integrated optical 
memories, and other components in nano-photonics and bio-
photonics. 

This paper reviews the most recent advances in the field of 
FD-BPM implementation. Highlighted improvements are still 
attractive and active areas of research. Extensive bibliography 
follows the review presented in the paper. 

Presented brief summary does not cover all advanced 
approaches proposed in the literature during the last decade. 
However, many of referred approaches have already 
significantly impacted the FD-BPM CAD manufacturing in 
photonics and optoelectronics. 

II. WIDE-ANGLE FD-BPM PROPAGATION 

The standard paraxial FD-BPM method limits the field 
simulations to paraxial beams along or close to the z axis. The 
WA-BPM schemes use Padé approximation of neglected 
second-order derivative with respect to the z in the wave 
equation, as it is assumed in the original BPM formulation. 
With the WA-BPM algorithms the field can be propagated 
through tilted and curved waveguide structures and circuits 
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without loss of accuracy. The WA-BPM approach offers 
much more realistic results of the lightwave propagation. 
Unfortunately, the serious drawback of this approach is the 
increase of the matrix bandwidth, especially when higher 
order Padé operator is used, causing problems with available 
computational resources. 

In order to improve the efficiency of the WA-BPM, the 
algorithm is combined with various multistep methods [12,13] 
and ADI methods [14-16]. The implementation of various 
improvements of the WA-BPM, including different meshes, 
non-standard co-ordinate systems [17] and multistep methods 
is perhaps the most attractive area in FD-BPM research.  

III. STRUCTURE-RELATED FD-BPM PROPAGATION 

The co-ordinate transformation approaches reformulate the 
BPM in non-orthogonal, so-called structure related (SR) co-
ordinate systems [18]. Successful approach to eliminate non-
physical scattering due to the staircasing effect in FD 
discretization of oblique dielectric interfaces in rectangular 
co-ordinate system is the use of the co-ordinate transformation 
methods, such as SR FD-BPM [18]. SR co-ordinate systems, 
such as tapered, oblique, bi-oblique co-ordinate systems, 
naturally follow the local geometry of the structure under 
analysis. The BPM Helmholtz’s equation can be rewritten and 
numerically solved in any orthogonal or non-orthogonal 
transverse co-ordinate system.  

SR FD-BPM algorithm allows simulations with noticeably 
reduced numerical noise and shortened simulation time. The 
non-orthogonal co-ordinate FD-BPM has been applied to the 
analysis of structures with oblique, bi-oblique, tapered, and 
tapered-oblique cross-sections in the transverse plane. 
Recently, the oblique FD-BPM has been proposed based on 
the fast explicit DFF algorithm [19]. 

IV. IMPROVED FD FORMULAS 

Implementations of the FD-BPM for structures in a 
rectangular co-ordinate system are characterized by low-order 
truncation errors, e.g. standard difference equations in two 
dimensions in homogeneous regions are second-order 
accurate, n = 2, or O(h2), where h is the FD mesh size. Near 
the step-index dielectric interfaces, accuracy usually drops to 
n ¡ 1, and near dielectric corner points difference equations 
are (n ¡ 2)th-order accurate, resulting with (n ¡ 1)th-order of 
accuracy of the modal index and modal electromagnetic field. 

The starting point in improving FD discretization procedure 
was Stern’s work [20] where the concept of a semi-vectorial 
mode has been introduced, resulting in O(h0) truncation error. 
Vassallo [21] proposed an improved three-point FD 
formulation for the semi-vectorial case providing O(h) 
accuracy. Yamauchi et al. [22] improved Vassallo’s approach 
to give O(h2) accuracy regardless of interface position. 
Chiang et al. [23] generalized Vassallo’s and Yamauchi’s 
approach to full-vectorial case to give O(h2) accuracy for 
oblique, even curved step-index boundaries. Hadley [24,25] 
derived highly accurate FD formulas, assuming TE 

polarization, with truncation error in the uniform region 
O(h4) to O(h6) depending on the type of grid employed, and 
up to the O(h5) near dielectric interfaces under certain grid-
interface conditions. In [24,25] Hadley utilized 2D solutions 
of the Helmholtz’s equation in cylindrical co-ordinates. This 
approach resulted in the tremendous increase in accuracy, 
however with increase in algebraic and numerical efforts in 
formulas derivation and implementation.  Three distinct cases 
of uniform regions, dielectric interfaces and dielectric corners 
are handled separately and these derivations are finally 
incorporated into a TE mode waveguide modelling tool. 
Although Hadley’s FD formulas are rather tedious to derive 
and implement, they have been incorporated in the improved 
accuracy eigenmode solvers for benchmark purposes in some 
waveguide simulations. 

A novel technique for obtaining the truncation error with 
O(h2N )  accuracy (where N  is number of sampled FD points) 
is recently proposed [26] for the 2D case. The extension to 3D 
cases is expected, promising benefits with tremendously less 
computation time and memory.  

V. IMPROVED FD DISCRETISATION 

FD-BPM modelling of optical and photonic crystal fibers 
with non-cylindrical cross-sections and complex geometries, 
including nonlinearity effects involved, have been 
successfully solved by using FD dicretisation with triangular-
mesh [27]. Nonlinear contributions to the index of refraction, 
due to high-power regimes of optical systems, are successfully 
treated within the algorithm. Curved dielectric boundaries of 
any shape can be accurately approximated with irregular 
deformable triangular FD-grid, although the derivation of 
accomplished FD formulas is more sophisticated and therefore 
more complicated. 

 The main disadvantage of the standard FD discretisation 
approach is a need to define a line-structured grid of points. 
Non-standard FD approaches, such as Generalized Finite-
Difference Method (GFDM) [28], relax the grid requirements. 
By using the radial or polynomial basis functions and a 
moving least-squares scheme, the FD interpolation formulas 
can be constructed on localized sets of points to enable 
dealing with complex geometries.   

Promising approach has been reported in [29], where the 
generalised two-dimensional full-vectorial FD approach has 
been used for the electromagnetic field discretisation near 
dielectric interfaces within rectangular grid featuring in 
O(h4), and higher, truncation error. 

The irregular generalized FD schemes are still to come in 
the use in the whole scope of the FD-BPM applications. 

VI. IMPROVED ITERATIVE FD-BPM ALGORITHMS 

The implicit FD-BPM methods (like CN – Crank-Nicolson 
method) are known as unconditionally stable FD-BPM 
algorithms. For fine FD meshes those algorithms require often 
time lengthy usually iterative procedures for matrix 
inversions. This is particularly problem when the propagation 
matrix is not sparse enough as in the original FD-BPM 
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applications. The WA-BPM and the reflective FD-BPM 
algorithms are the typical examples. In those cases every step-
forward in cutting the computer runtimes is welcomed. A new 
complex Jacobi iterative (CJI) method, proposed by Hadley 
[8], is one of the most promising and competitive approach. 
The CJI method has been successfully applied to the 3D WA-
BPM simulations [12,13,30] enabling a development of higher 
order 3D Padé approximant–based algorithms within modest 
runtimes and memory requirements. 

Another way forward to improve the iterative FD-BPM 
algorithms is to speed-up the convergence rate by constructing 
and applying a suitable preconditioner. Usually, this is the 
typical linear algebra problem, where the CJI method [11] can 
serves as a preferable approach for obtaining precondition 
parameters for optimum algorithm convergence. An efficient 
idea is to use a preconditioner based on paraxial 
approximation [31]. 

VII. NON-ITERATIVE FD-BPM ALGORITHMS 

The standard FD-BPM technique employs the CN scheme 
which is unconditionally stable, however, as an implicit 
procedure, has a drawback because it uses iterative matrix 
solver in every propagation step and thus requires huge 
computational resources. ADI-FD-BPM makes use of the 
highly efficient non-iterative Thomas algorithm (the direct 
tridiagonal matrix solver) by splitting the FD operator in two 
one-dimensional terms – i.e. two FD equations. 

 ADI schemes have been successfully applied to the WA-
BPM algorithm to enhance the efficiency of the WA schemes 
[14,15]. Further, the Hoekstra’s scheme has been utilized with 
the ADI and WA algorithm [32]. Non-iterative Local One-
Dimensional (LOD) schemes were recently introduced for 3D 
FD-BPM [33]. 

The attractive alternative to implicit (iterative or non-
iterative) schemes is sought within the use of the three-level 
explicit DuFort-Frankel (DFF) algorithm [19,34]. The DFF 
algorithm is the rare example of the explicit BPM procedure 
being unconditionally stable. The DFF approach does not 
need matrix solver; the associate computer code can be 
parallelized easily and very efficiently onto distributed 
memory parallel computers. Besides of these highly 
competitive benefits, the DFF scheme has some serious 
inherent disadvantages (or weakness). First of all, this is the 
appearance of the spurious mode solutions (the FDD 
algorithm is empirically constructed). To avoid and suppress 
spurious (fake) modes, the propagation step has to be reduced, 
or obtained solution has to be filtered. Furthermore, the FDD-
BPM approach is still limited to paraxial and semi-vectorial 
cases. Therefore, the trade between unprecedented simplicity 
and efficiency of the DFF-BPM method and serious 
drawbacks on the other hand will certainly continue to deserve 
attention of researches in the future. 

 
 
 
 

VIII. MODERN IMPLEMENTATION OF THE FD-BPM 

Photonic devices are being constantly improved and 
developed in the last decade. These newly-designed structures 
have placed high demands on the numerical modellers. 
Although the finite element method (FEM) and finite-
difference time domain method (FD-TD) are traditionally 
used today to solve the propagation and modal properties of 
these newly-designed photonic devices, the FD-BPM is highly 
applicable in this direction as well. 

The employment of the FD-BPM in the design of novel 
optical fibers with complex geometries and modal properties 
operating in nonlinear and high power regimes [27,35,36] is 
already highlighted in Section 5. Numerical simulations of the 
wave propagation in plasmonics (metallic waveguides 
supporting surface plasmons having the enormous bandwidth 
of a light pulse) have been recently accomplished by the use 
of the FD-BPM [37]. Photonic crystal fibers [38] and other 
newly-designed modern photonic structures [39], which 
appear as the result of the advances in the modern nano-
fabrication and characterization techniques, can be 
successfully modelled with the FD-BPM approaches.    

IX. CONCLUSION 

The FD-BPM remains one of the most widely used 
techniques for numerical field simulations in integrated 
photonics and optoelectronics. Some of very promising 
recently proposed FD-BPM procedures have been addressed 
and discussed. The overall conclusion is that the improvement 
of the capabilities of the FD-BPM is still a very attractive area 
of research in numerical photonics. 
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