

An Approach to Teaching "Software Design Patterns"
Violeta Bozhikova1, Mariana Stoeva2 and Veneta Aleksieva3

Abstract – This paper is about some problems of teaching
“Software Design Patterns” in the Master's degree education and
our approach to teaching this discipline. The paper underlines
traditional and specific requirements respected by the approach
developed and presents its main characteristics, based on the
method of electronic textbook. Then, the approach for self-
testing and examination of knowledge is discussed and some
ideas for further development of the testing part are marked.

Keywords – Electronic Textbook, Computer-based Learning,
Teaching Strategy, Knowledge Testing and Evaluation.

I. INTRODUCTION

Design patterns are attracting more attention now because
they encapsulate valuable knowledge to solve recurring design
problems and improve the quality of programming work.
These architectural constructions for reuse become popular
after 1994 with the book of Erich Gamma and al. [2]. A
design pattern provides a general solution to a common
problem in software design and is a language-independent
description (or template) of the problem in general, which can
be directly transformed into a code.

This paper is about our approach to teaching „Software
Design Patterns. The course „Software Design Patterns" is
included as an elective, in the second semester of the master's
degree program for specialty Computer Systems and
Technologies (CST), in the Technical University of Varna.
The course includes lectures and practical exercises. The main
topics of the course are related to the study of the three main
groups of patterns (building, structural and behavioural) and
the ways of their multiple use, their combination, their
documentation and testing. Unified modelling language
(UML) is mainly used for the pattern presentation.

It is seen that the course is based on extensive field of
knowledge. Students should know the principles of object-
oriented analysis and design, the unified modelling language
(UML) and at least one object-oriented language. There are a
lot of problems in teaching such a discipline: how to motivate
the students to learn this complex technology, how to
overcome the problem associated with the different
background of the students, how to solve the problem of their
employment (the majority of students enrolled in Masters
Education are employed). A flexible teaching approach must
be developed, an approach that encourages the students,

regardless of their different background, an approach that
holds the students attention and complies with their
employment, providing them and individual workspace.

Section 2 presents the main characteristics of the proposed
approach which is based on the method of electronic textbook:
traditional and the specific requirements, respected by the
teaching approach; structure and implementation of developed
electronic textbook and specially – our approach to check the
learning.

The last section presents our conclusions and future work.

II. OUR APPROACH TO TEACHING „SOFTWARE

DESIGN PATTERNS"

A. Traditional and specific requirements to electronic
teaching materials

We offer an approach for teaching software design patterns
based on the electronic textbook. E-books (electronic
textbooks) are computer-based systems [3, 4], mainly oriented
towards training students, also examination and knowledge
evaluation of the students. To electronic teaching materials
have both traditional and specific requirements. As
"traditional" we could define the following properties:
 Adequacy (in terms of curriculum) and completeness of

the statement;
 Logic and coherence of the presentation.
 Accessibility statement of material
 Scientific character of the material.

To achieve the objectives of the course „Software Design
Patterns” and to overcome the above problems, the electronic
textbook, proposed by us has a structure shown in Figure 1 in
order to respect the following specific requirements:
 To focus on the practical aspects of applying patterns in

software development instead of theory: the aim is to
motivate the students to use this technology and
maintaining enough self-discipline to understand its
general ideas. During laboratory exercises, students learn
patterns through small examples check their knowledge
(through tests) and finally - develop specific software
tasks with higher complexity. The aim is, after
graduation, students are able to independently design,
develop, and document complete software solutions using
a combination of patterns.

 To be based on examples written in C #.Net, a language
that is studied in the previous semester in the Master
Course.

1Violeta Bozhikova is with the Faculty of Computing and
Automation, TU-Varna, Studentska 1, 9010 Varna, Bulgaria,
E-mail: vbojikova2000@yahoo.com.

2Mariana Stoeva is with the Faculty of Computing and
Automation, TU-Varna, Studentska 1, 9010 Varna, Bulgaria,
E-mail: mariana_stoeva@abv.bg

3Veneta Aleksieva is only presenter of this paper and is with the
Faculty of Computing and Automation, TU-Varna, Studentska 1.

 To focus mainly on individual work rather than
teamwork.

 To be bilingual (to support Bulgarian and English
language) in order to serve as a textbook on the subject
"Software Design Patterns" for Bulgarian-speaking and
English-speaking students.

1007

mailto:mariana_stoeva@abv.bg

 enable self-testing and self-assessment of the student’s
knowledge at different levels; for each topic, for each
module and for the whole material;

 be convenient for maintenance and future evolution;
Since software design patterns are numerous, and the
developed electronic textbook focuses on the universal
patterns only [5], the architecture of the electronic
textbook is simplified to allow easy further development
without impairing the quality in. Each topic presents a
pattern and is stored in separate .rtf file when the tests are
stored in .txt files (shown in the left part of Figure 2).
Thus the change and complete replacement of the content
of a pattern and the adding of new patterns is easy, with
minimal technical effort, without program intervention in
the system itself.

B. Structure and implementation of developed electronic
textbook

Fig. 1. The generalized structure of the created electronic textbook

The main modules (see figure 1) of the created electronic

textbook on the subject " Software Design Patterns” are:
 MAIN MODULE: the most important part of the book,

which exposes the contents of the course on modules and
themes, each theme includes descriptions of lectures and

laboratory exercises. This part is divided into three main
modules, according to the three main groups of the
patterns (building, structural and behavioral). Each
lecture and each laboratory exercise are accompanied by
graphic illustrations (UML diagram, etc.). Each
laboratory exercise includes a description of assignments
of tasks to be performed in order to assimilate the
material in practice. This part includes also Q & A
MODULE with frequently asked questions and answers.

 TEST MODULE: includes questions about self-
assessment at different levels: at topic level, module level
and final test level;

 MODULE DICTIONARY: includes a glossary of terms;
Figure 2 shows the main window of the electronic textbook,

realised as a desktop C#.Net application.

C. Our approach to self-testing and examination of knowledge

 Module “Tests” is used by the students to self-checking of
learning. There are different ways of organizing test
questions. Our module randomly generates a sequence of
questions (“close” or “open”), which answers can be given in
one of the following ways:
a) For “close” question: By selecting an option (or options)
from a list of answers (menu), in which each question
provides a list of correct and incorrect answers (figure 3). The
student selects one or several answers. The system displays
the correct answer but does not provide an assessment of the
learner. In the wrong answer to this type of question, the
system provides the both the correct answer and the wrong
answer (figure 5) - displayed in red.
b) For “open” question: Response in the form of text (figure
4). The system displays the correct answer in the form of
"reference text" but does not provide an assessment of the
learner (figure 6). The ability to see the correct answers gives
the learner a real idea of the extent of assimilation of the
material.

Students can go back and change answers to previous
question before the test is completed.

Fig. 2.The main window of the electronic textbook

MAIN PART
Lectures

Module
“Tests”

Labs
FINAL TEST

Q & A

E-book

DICTIONARY

1008

 Fig.3. A “close” test question Fig.4. An “open” test question

Fig. 5. A “close” question answer Fig. 6. An “open” question answer

III. CONCLUSION

In this paper, we discuss some problems of teaching
“Software Design Patterns” in the master's degree education
of specialty Computer Systems and Technologies in the
Technical University of Varna. Based on our experience and
observations in teaching similar courses we could claim that
the discipline "Software Design Patterns" is undoubtedly
useful for students in master's degree. It is because design
patterns are elegant solutions to typical problems in the
software design, with the possibility of reuse. They are a way
to increase efficiency and quality of programming work in
developing advanced software applications.

Next, the paper presents our approach to teaching
„Software Design Patterns" - an approach based on the
method of an electronic textbook. The paper highlights the
traditional and the specific features of the developed
electronic textbook and comments its structure, its
implementation and mainly - the approach used for self-
testing and student’s knowledge examination. We could also
argue that the proposed teaching approach for the course
"Software Design Patterns" is innovative and effective. This is
because it is computer based, i.e. it is based on the latest

teaching methodology both to the learning process, and also to
students who are trained. The created textbook on the subject
"Software Design Patterns" contains material for various
levels of complexity, it is much more compact than traditional
printed textbooks (it is collected in one CD) and it is
accessible from any workstation (it is installed on each
computer). It focuses on practical examples instead of theory.
Based on our more than twenty years practice in Computer
Sciences and Engineering Department of the Technical
University in Varna we are persuaded that accentuating on
practical examples instead of theory is the best way of
motivating the students to use some technology. It provides
personalized information space for each student and much
higher visibility than the traditional printed textbook. It
provides a variety of tests with varying degrees of complexity
in interactive teaching mode; there is a feedback - in an
incorrect response from the student, the system offers the right
answer.

There are many directions for development and
improvement of the textbook developed, although it complies
with both the traditional and the specific requirements. Let
mention only some of them: adding audio, video fragments
and animations in MAIN PART; adding new software
patterns; adding of recommendations and examples to assist

1009

students when implementing the stated laboratory tasks;
transition from Desktop implementation to WWW-based
application. There are also many opportunities to improve the
testing module: firstly, the e-book has to enable the teacher to
control the absorption of knowledge, next - implementation of
a system for assessing the acquired knowledge is needed. The
evaluation of the students' knowledge for each “close”
question could be realized using for example the formula,
given in [4]: y = r / (N + f), where r is the number of correctly
selected items from the list of responses, N - number of
correct answers in the list, f - number of incorrect items from
the list of answers. Criterion for the correctness of the answer
for an open question might be the presence of a number of key
words in the reference text

All these ideas for further development aimed at achieving
even greater visibility of the presented teaching material, even
greater completeness of the contents of the course and
accordingly: higher efficiency of the learning process.

ACKNOWLEDGEMENT

This work is supported by a scientific research project in
Technical University of Varna.

REFERENCES

[1] Shirley Tessler, Avron Barr, Nagy Hanna, National Software
Industry Development: Considerations for Government
Planners,
http://www.aldo.com/Publications/Papers/National_SWI_Devel
opment_050303.

[2] Erich Gamma, Richard Helm, Ralph Johnson, and John
Vlissides, Design Patterns: Elements of Reusable Object-
Oriented Software,
http://www.uml.org.cn/c++/pdf/DesignPatterns.pdf

[3] E-book http://en.wikipedia.org/wiki/E-book
[4] Норенков И.П., Информационные технологии в

образовании,
http://bigor.bmstu.ru/?cnt/?doc=Default/050_iteduc.cou

[5] C# 3.0 Design Patterns, Judith Bishop, O’Reilly Media, 2008

1010

http://www.aldo.com/Publications/Papers/National_SWI_Development_050303.
http://www.aldo.com/Publications/Papers/National_SWI_Development_050303.
http://en.wikipedia.org/wiki/Richard_Helm
http://en.wikipedia.org/wiki/Ralph_Johnson
http://en.wikipedia.org/wiki/John_Vlissides
http://en.wikipedia.org/wiki/John_Vlissides
http://en.wikipedia.org/wiki/E-book

