

643

Reduction of Large Integers by Random Modulus in
Public-Key Cryptosystems

Plamen Stoianov1

Abstract – Public-key cryptography is often considered to be
too computationally expensive for devices if not accelerated by
cryptographic hardware. The most asymmetric cryptographic

algorithms used modular operationals MAX E mod= for
large integers. These operations determine the data processing
speed. The paper presents algorithm for calculating modular
reduction without division and multiplication. These operations
replaced with rotation and subtraction.

Keywords – Public-key cryptosystems, modular reduction, pre-
calculation, integer arithmetic.

I. INTRODUCTION

The need for information security has grown steadily over
the years. Users require protection of information from
unauthorized access and alteration. Essential tool for
achieving these objectives is the use of cryptography. In
simplified terms, there are three types of data in encryption
technology. The first is plaintext, which is unencrypted data.
Encrypted data is referred to as ciphertext. The third is a key,
one or more of which is required for encryption and
decryption. These tree types of data are processed by an
encryption algorithm. Cryptology can be split into two areas
of activity, namely cryptography and cryptanalysis.
Cryptography is the study of the methods used for encrypting
and decrypting data. Goal of cryptanalysis is to develop
methods and tools for the revealing of cryptographic systems
and evaluate their security.

Modern cryptographic algorithms are generally based on
Kerckhoff’s principle. This principle says that the entire
security of an algorithm should be based only on the on the
secrecy of the key, and not on the secrecy of the cryptographic
algorithm. The opposite of Kerckhoff’s principle is the
principle of security by concealment. With this principle, the
security of a system is based on the idea that a would-be
attacker does not know how the system works. Up to now,
every system based on this principle alone has been broken,
usually in a very short time[6].

Cryptographic techniques are fundamental to the
implementation of security services and may be divided into
two classes: symmetric-key and public-key cryptography.

Symmetric-key cryptography requires a single secret key
that is used for both encryption and decryption hence the
designation ‘symmetric’. The exchange of this secret key
forms part of the key management problem, that is concerned

with the secure distribution of key to the communicating
parties. The two types of symmetric-key algorithms are block
ciphers and stream ciphers. Block ciphers operate on a block
of data while stream ciphers encrypt individual bits. Block
chippers are typically used when performing bulk data
encryption and the data transfer rate of the connection
typically follows the encryption/decryption throughput of the
implemented algorithm. The most widely used symmetric
cryptographic algorithm (know as Feistel’s ciphers) are Triple
DES, AES, IDEA etc [11].

A major advance in cryptography came in 1976 with the
publication by Diffie and Helman (New Directions of
Cryptography) of the concept of public-key cryptography.
This new concept that would revolutionize cryptography as it
was known at the time. The primary feature is that it removes
the need to use a single key for encryption as well as
decryption. Pair of matched keys is used, termed ‘public’ and
‘private’ keys. The public part of the key pair can be
distributed publicly without compromising the security of the
private key, which must be kept secret by the receiver. A
message encrypted with the public key can only be decrypted
with the corresponding private key. The key management
problem is greatly simplified by the use of public-key
cryptosystems.

Most public-key cryptosystems used today are based on the
difficulty of factorizing large integers as well as the difficulty
to compute the discrete logarithm of a large integer. The
implementation of these public-key cryptosystems requires
modular exponentiations.

II. OVERVIEW OF ALGORITHMS FOR MODULAR

REDUCTION

The operational speed of public-key cryptosystems is
largely determined by the modular exponentiation operation

of the form MAX E mod= where X is the remainder, A is
the base, E is the exponent and M is the modulus. The
modular multiplication operation is accomplished using two
steps. It first computes a large-integer multiplication step
followed by a modular reduction step. The required modular
exponentiation is computed by a series of modular
multiplications [8]. The RSA cryptosystem uses modular
arithmetic algorithms with large integers in the range of 512
to 2048(more than 600 decimal digits) bits.

The RSA cryptosystem, named after its inventors Rivest,
Shamir and Adleman, is the most widely used public-key
cryptosystem[4]. Its very simple operating principle is based
on the arithmetic of large integers. The two keys are generated
from two large prime numbers [10]. The encryption and

1Plamen Stoianov is with the Technical University of Varna,
Telecommunications Department, Studentska 1 , Varna, Bulgaria,
E-mail: pl63@abv.bg.

644

decryption processes can be expressed mathematically as
follows:

 encryption: nxy e mod=

 decryption: nyx d mod=

 where x = plaintext
 y = ciphertext
 e = public key
 d = private key
 n = p.q =public modulus
 p,q = secret prime numbers
Before being encoded, the plaintext block must be padded

to the appropriate block size, which varies in the RSA
algorithm according to the length of the key used. Encryption
itself is performed by exponentiation of the plaintext followed
by a modulus operation. The result of this process is the
ciphertext. This can only be decoded if the private key is
known. The decryption process is analogous to the encryption
process. The security of the algorithm is based on the
difficulty of factoring large numbers. It is quite easy to
compute the public modulus from the two prime numbers by
multiplication, but it is very difficult to decompose the
modulus into its two prime factors, since there is no effective
algorithm for this operation. Way to increase the speed of the
RSA algorithm is to use the Chinese Remainder Theorem.
Prerequisite for using the CRT is that both of the secret prime
number p and q are known, which means that it can only be
used for decryption [3].

A basic operation in public-key cryptosystems is the
modular reduction X=AmodM of large numbers. An efficient
implementation of this operation is the key to high
performance. In many cases the modulus M is fixed. The fact
that M is constant makes it feasible to precompute some
values ahead of time which typically results in avoiding
divisions and replacing them by multiplications [9].

The Classical, Barrett and Montgomery algorithms are well
known modular reduction algorithms for large integers used in
public-key cryptosystems. Each algorithm has its own unique
characteristics resulting in a specific field of application.

Classical algorithm is a formalization of the ordinary t-n
step pencil and paper method, each step of which is the
division of a (n+1)-digit number M by the n-digit divisor M,
yielding the one-digit quotient Q and n-digit remainder R.
Each remainder R is less than M, so that it can be combined
with the next digit of the dividend into the (n+1)-digit number
Rb+(next digit of dividend) to be used as the new X in the
next step[7]. The algorithm is as follows:

 Input : A =
i

t

i
iba∑

−

=

1

0

 , M =
i

n

i
ibm∑

−

=

1

0

 Output : X =
i

n

i
ibx∑

−

=

1

0

 = A mod M

1. X ← A

2. While X ≥ M ntb − do X←X - ntb −
3. for i = t-1 to n-t+1 step -1 do

 if ir = 1−nm then q = b – 1

 else q = ir b+ 1−ir div ntb −
1−nm

3.2 While q(1−nm b+ 2−nm) > 21
2

−− ++ iii ababa

 do q ←q – 1

3.3 X ← X - q niMb −

3.4 if X < 0 then X ← X + niMb −

 Step 3.2 can be modified to :

 q 2−nm > (11 −− −+ nii qmaba)b + 2−ia .

Since 11 −− −+ nii qmaba < nm , this step can be done in

two multiplications (plus one comparison of two-digit
numbers). Thus this algorithm requires n(n+2) multiplications
and n divisions for 2n-bit dividend [8].

P. Montgomery introduced an efficient algorithm for
modular multiplication without explicitly carrying out the
classical modular reduction step[5]. By representing the
residue classes modulo m in a nonstandard way,
Montgomery’s method replaces a division by m whit a
multiplication followed by a division by a power of b. The m-

residue with respect to R = kb of an integer x < m is defined
as xR mod m. The Montgomery reduction of x is defined as

x 1−R mod m, where 1−R is the inverse of R modulo and is
the inverse operation of the m-reside transformation. It can be
shown that the multiplication of two m-residues followed
Montgomery reduction is isomorphic to the ordinary modular
multiplication. The rationale behind the m-residue
transformation is the ability to perform a Montgomery

reduction x 1−R mod m for 0 ≤ x < Rm in almost the same
time as a multiplication. If x is the production of two m-
residues, the result is the m-residue of the remainder, and the
remainder itself is obtained by applying one additional
Montgomery reduction. Instead of computing all of t at once,

one can compute one digit t at a time, add i
imbt to x, and

repeat[7]. This change allows the computation of

0
,m = -

1
0
−m mod b instead of ,m . The algorithm is as

follows:
 for i=0 ; i < k ; i++ do {

 it = (X* 0
,m) mod b

 x = x + i
imbt }

 x = x div kb
 if (X≥m) then
 x = x - m

Barrett reduction was inspired by fast division algorithm

that multiply the reciprocal of the divisor to emulate division.
This reduction technique is advantageous in a modular
exponentiation where many reductions are performed with the
same modulus[1]. It was the first approach to perform
reduction without explicitly using the division step in the
loop. P.Barrett introduced the idea of estimating the quotient
Q = A div M with operations that either are less expensive
than a multiprecision division by M [2]. The estimate for Q’
of A div M is obtained by replacing the floating-point
divisions in

645

Q = ⎣ ⎦tktk bMbbA /)/)(/(22 − by integer division

Q’ = ((Adiv tkb −2)μ)div tb where μ = ⎥
⎦

⎥
⎢
⎣

⎢
M

b k2

The number of multiplications and the resulting error is
more or less independent of t. The best choice for t, resulting
in the least number of operations and the smallest maximal
error is t=k+1. The algorithm is follows:

 Input : A =
i

k

i
iba∑

−

=

12

0

 , M =
i

k

i
ibm∑

−

=

1

0

 Output : X =
i

k

i
ibx∑

−

=

1

0

 = A mod M

 1. Pre-calculation

 1.1 μ = ⎥
⎦

⎥
⎢
⎣

⎢
M

b k2

 2. Calculation of the quotient

 2.1 Q ← ⎥⎦
⎥

⎢⎣
⎢

+1kb

A
 μ

 2.2 Q’← ⎥⎦
⎥

⎢⎣
⎢

+1kb

Q

 3. Compute the remainder

 3.1 1R ← A mod 1+kb

 3.2 2R ← (Q’*M) mod 1+kb

 3.3 R ← 1R - 2R

 4. Correction of the result

 4.1 if R < 0 then R + 1+kb
 4.2 while R≥ M do R ← R - M

III. PROPOSED ALGORITHM

For computing X=AmodM without division and
multiplication the following algorithm is suggested:

 Input : A =
i

t

i
ia 2

1

0
∑
−

=

 , M =
i

n

i
im 2

1

0
∑
−

=

, t > n

 Output : X =
i

nt

i
ix 2

1

0
∑

−−

=

 = A mod M

1. Pre-calculation

 1.1 X ← A mod n2 , S ← n2 - M
 1.2 While X ≥ M do X ← X – M
 1.3 While S > M do S ← S – M
2. Computation X
 2.1 for i = n ; i < t ; i++ do {

 2.2 if ia = 0 then step 3

 2.3 X ← X + S
 2.4 if X ≥ M then X ← X – M
3. Correction S

 3.1 S ← S + S
 3.2 if S ≥ M then S ← S – M }
4. return (X)

 Step 1 involves pre-calculated of X and S. The

expression of A may be written in the following way:

A =
i

t

i
ia 2

1

0
∑
−

=

 mod M = (
ni

nt

i
ia 2*2

1

0
∑

−−

=

+
i

n

i
ia 2

1

0
∑
−

=

) mod M =

i
nt

i
ia 2

1

0
∑

−−

=

 mod M * S + X

where X =
i

n

i
ia 2

1

0
∑
−

=

 mod M and S = n2 mod M

In algorithm RSA t≤ 2n because always A < 2M

In step 2, the current bit ia is checked and if it is =1 the

current value of X is corrected.
Step 3 is related preparation of S for the next cycle i+1
If the checking of i is performed before step 3 , the

calculation will be reduced by time for thelast preparation of
S.

In base b>2 the following algorithm is suggested:

 Input : A =
i

t

i
iba∑

−

=

1

0

 , M =
i

n

i
ibm∑

−

=

1

0

, t > n

 b = k2

 Output : X =
i

nt

i
ibx∑

−−

=

1

0

 = A mod M

1. Pre-calculation

 1.1 X ← A mod nb , S ← nb - M
 1.2 While X ≥ M do X ← X – M
 1.3 While S > M do S ← S – M
2. Computation X
 2.1 for i = n ; i < t ; i++ do {
 2.2 for j = 0 ; j < b ; j++ do {

 2.3 if jia + = 1 then X ← X + S

 2.4 if X ≥ M then X ← X – M
3. Correction S
 3.1 S ← S + S
 3.2 if S ≥ M then S ← S – M }}
4. return (X)

When is selected base b > 2 , he number of the external

cycles is reduced.
When there is a larger bulk of operation memory it is

possible to reduce the operating time. In step 1 is calculated:

 kn
k bS +← - M for k=0 to b-1

Calculated values for kS are used to calculate X ← X + S

without multiplication in step 2. In this case, step 3 is outside
of the internal cycle

646

IV. CONCLUSION

In the known algorithms for modular reduction pre-
calculations are carried out in order to change the module to

2b of 2 for faster processing of blocks of data. These
calculations involve multiplication and division of large
integers. The proposed algorithm uses only elementary
operations of rotation, addition and subtraction without
division and multiplication.

The algorithm can be employed in applications using
microcontrollers with smaller computing capabilities without
hardware multipliers. In addition, the efficiency and reliability
of the algorithm is higher when processing small amounts of
data due to the elementary pre-calculations. Therefore, it can
be used to exchange session keys for symmetric algorithms.

REFERENCES

[1]]. W. Hasenplaugh, G. Gaubatz, V. Gopal,“Fast Modular
Reduction”. IEEE Symposium on Computer Arithmetic
pp.225-229, 2007

[2] P. Barrett. “Implementing the Rivest Shamir Adleman public-
key encryption algorithm on a standart digital signal processor”.
Advances in Cryptology – CRYPTO’86, pp.311-323, 1987

[3] T.R. Rao. “Aryabhata Remainder Theorem : Relevance to
public-key crypto algorithms”. Symposium on Cryptography
and Information Security. Japan 2005.

[4] R. Rivest, A. Shamir, L. Adleman. “A method for obtaining for
digital signatures and public-key cryptosystems”. CACM,
vol.21, pp.120-126, 1978

[5] P. Montgomery. “Modular multiplication without trial
division”. Mathematics of Computation, vol.44, pp.519-521,
1985.

[6] R. Wolfgang, E. Wolfgang, “Smart card handbook” 3rd edition,
November 2003.

[7] A. Bosselaers, R. Govaerts and J. Vandewalle, “Comparison of
three modular reductions”, Advances in Cryptology – Crypto
’93 (LNCS 773), Springer-Verlag, pp. 175-186, 1994.

[8] Chia-Long Wu. “Fast modular multi-exponentiation using
modified complex arithmetic”. Applied Mathematics and
Computation, pp.1065-1074, 2007.

[9] N. Gura, A. Patel, A. Wander, H. Eberle, S. Shantz, “Comparing
Elliptic Curve Cryptogrraphy and RSA on 8-bit CPUs”
Proceedings of CHES’2004. pp.119-132

[10] D. Boneh, H. Shacham, :Fast variants of RSA”. Crypto Bytes,
vol. 5, No 1, pp. 1-9,2002

[11] T. Wollinger, J. Guajardo, Ch. Paar,:Cryptography in Embedded
Systems:An Overview”. Proceedings of the Embedded World
2003, Design & Elektronik, Germany, 2003, pp. 735-744

