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Reduction of Large Integers by Random Modulus in 
Public-Key Cryptosystems 
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Abstract – Public-key cryptography is often considered to be 
too computationally expensive for devices if not accelerated by 
cryptographic hardware. The most asymmetric cryptographic 

algorithms used modular operationals MAX E mod=  for 
large integers. These operations determine the data processing 
speed. The paper presents algorithm for calculating modular 
reduction without division and multiplication. These operations 
replaced with rotation and subtraction. 
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I. INTRODUCTION 

The need for information security has grown steadily over 
the years. Users require protection of information from 
unauthorized access and alteration. Essential tool for 
achieving these objectives is the use of cryptography. In 
simplified terms, there are three types of data in encryption 
technology. The first is plaintext, which is unencrypted data. 
Encrypted data is referred to as ciphertext. The third is a key, 
one or more of which is required for encryption and 
decryption. These tree types of data are processed by an 
encryption algorithm. Cryptology can be split into two areas 
of activity, namely cryptography and cryptanalysis. 
Cryptography is the study of the methods used for encrypting 
and decrypting data. Goal of cryptanalysis is to develop 
methods and tools for the revealing of cryptographic systems 
and evaluate their security.  

Modern cryptographic algorithms are generally based on 
Kerckhoff’s principle. This principle says that the entire 
security of an algorithm should be based only on the on the 
secrecy of the key, and not on the secrecy of the cryptographic 
algorithm. The opposite of Kerckhoff’s principle is the 
principle of security by concealment. With this principle, the 
security of a system is based on the idea that a would-be 
attacker does not know how the system works. Up to now, 
every system based on this principle alone has been broken, 
usually in a very short time[6]. 

Cryptographic techniques are fundamental to the 
implementation of security services and may be divided into 
two classes: symmetric-key and public-key cryptography.   

Symmetric-key cryptography requires a single secret key 
that is used for both encryption and decryption hence the 
designation ‘symmetric’. The exchange of this secret key 
forms part of the key management problem, that is concerned 

with the secure distribution of key to the communicating 
parties. The two types of symmetric-key algorithms are block 
ciphers and stream ciphers. Block ciphers operate on a block 
of data while stream ciphers encrypt individual bits. Block 
chippers are typically used when performing bulk data 
encryption and the data transfer rate of the connection 
typically follows the encryption/decryption throughput of the 
implemented algorithm. The most widely used symmetric 
cryptographic algorithm (know as Feistel’s ciphers) are Triple 
DES, AES, IDEA etc [11]. 

A major advance in cryptography came in 1976 with the 
publication by Diffie and Helman (New Directions of 
Cryptography) of the concept of public-key cryptography. 
This new concept that would revolutionize cryptography as it 
was known at the time. The primary feature is that it removes 
the need to use a single key for encryption as well as 
decryption. Pair of matched keys is used, termed ‘public’ and 
‘private’ keys. The public part of the key pair can be 
distributed publicly without compromising the security of the 
private key, which must be kept secret by the receiver. A 
message encrypted with the public key can only be decrypted 
with the corresponding private key.  The key management 
problem is greatly simplified by the use of public-key 
cryptosystems. 

Most public-key cryptosystems used today are based on the 
difficulty of factorizing large integers as well as the difficulty 
to compute the discrete logarithm of a large integer. The 
implementation of these public-key cryptosystems requires 
modular exponentiations. 

 

II. OVERVIEW OF ALGORITHMS FOR MODULAR 

REDUCTION 

The operational speed of public-key cryptosystems is 
largely determined by the modular exponentiation operation 

of the form MAX E mod=  where X is the remainder, A is 
the base, E is the exponent and M is the modulus. The 
modular multiplication operation is accomplished using two 
steps. It first computes a large-integer multiplication step 
followed by a modular reduction step. The required modular 
exponentiation is computed by a series of modular 
multiplications [8]. The RSA cryptosystem uses modular 
arithmetic algorithms with large integers in the range of 512 
to 2048(more than 600 decimal digits) bits.  

The RSA cryptosystem, named after its inventors Rivest, 
Shamir and Adleman, is the most widely used public-key 
cryptosystem[4]. Its very simple operating principle is based 
on the arithmetic of large integers. The two keys are generated 
from two large prime numbers [10]. The encryption and 
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decryption processes can be expressed mathematically as 
follows: 

               encryption:  nxy e mod=   

               decryption:  nyx d mod=   

               where   x = plaintext 
                            y = ciphertext 
                            e = public key 
                            d = private key 
                            n = p.q =public modulus 
                          p,q = secret prime numbers 
Before being encoded, the plaintext block must be padded 

to the appropriate block size, which varies in the RSA 
algorithm according to the length of the key used. Encryption 
itself is performed by exponentiation of the plaintext followed 
by a modulus operation. The result of this process is the 
ciphertext. This can only be decoded if the private key is 
known. The decryption process is analogous to the encryption 
process. The security of the algorithm is based on the 
difficulty of factoring large numbers. It is quite easy to 
compute the public modulus from the two prime numbers by 
multiplication, but it is very difficult to decompose the 
modulus into its two prime factors, since there is no effective 
algorithm for this operation.  Way to increase the speed of the 
RSA algorithm is to use the Chinese Remainder Theorem. 
Prerequisite for using the CRT is that both of the secret prime 
number p and q are known, which means that it can only be 
used for decryption [3]. 

A basic operation in public-key cryptosystems is the 
modular reduction X=AmodM of large numbers. An efficient 
implementation of this operation is the key to high 
performance. In many cases the modulus M is fixed. The fact 
that M is constant makes it feasible to precompute some 
values ahead of time which typically results in avoiding 
divisions and replacing them by multiplications [9]. 

The Classical, Barrett and Montgomery algorithms are well 
known modular reduction algorithms for large integers used in 
public-key cryptosystems. Each algorithm has its own unique 
characteristics resulting in a specific field of application.  

Classical algorithm is a formalization of the ordinary t-n 
step pencil and paper method, each step of which is the 
division of a (n+1)-digit number M by the n-digit divisor M, 
yielding the one-digit quotient Q and n-digit remainder R. 
Each remainder R is less than M, so that it can be combined 
with the next digit of the dividend into the (n+1)-digit number 
Rb+(next digit of dividend) to be used as the new X in the 
next step[7]. The algorithm is as follows: 
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i
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 = A mod M 

1. X ← A 

2. While X ≥  M ntb −  do X←X  - ntb −  
3. for i = t-1 to n-t+1 step -1 do  

 if ir = 1−nm   then  q = b – 1  

                            else q = ir b+ 1−ir div ntb −
1−nm  

3.2  While  q( 1−nm b+ 2−nm ) > 21
2

−− ++ iii ababa  

                           do  q ←q – 1 

3.3 X ← X - q niMb −  

3.4 if  X < 0 then  X ← X + niMb −  
 
  Step 3.2 can be modified to : 

          q 2−nm  > ( 11 −− −+ nii qmaba )b + 2−ia . 

Since 11 −− −+ nii qmaba < nm , this step can be done in 

two multiplications (plus one comparison of two-digit 
numbers). Thus this algorithm requires n(n+2) multiplications 
and n divisions for 2n-bit dividend [8]. 

P. Montgomery  introduced an efficient algorithm for 
modular multiplication without explicitly carrying out the 
classical modular reduction step[5]. By representing the 
residue classes modulo m in a nonstandard way, 
Montgomery’s method replaces a division by m whit a 
multiplication followed by a division by a power of b. The m-

residue with respect to R = kb of an integer x < m is defined 
as xR mod m. The Montgomery reduction of x is defined as 

x 1−R mod m, where 1−R  is the inverse of R modulo and is 
the inverse operation of the m-reside transformation. It can  be 
shown that the multiplication of two m-residues followed 
Montgomery reduction is isomorphic to the ordinary modular 
multiplication. The rationale behind the m-residue 
transformation is the ability to perform a Montgomery 

reduction x 1−R mod m for 0 ≤  x < Rm in almost the same 
time as a multiplication. If x is the production of two m-
residues, the result is the m-residue of the remainder, and the 
remainder itself is obtained by applying one additional 
Montgomery reduction. Instead of computing all of t at once, 

one can compute one digit t at a time, add i
imbt  to x, and 

repeat[7]. This change allows the computation of  

0
,m = -

1
0
−m  mod b  instead of ,m . The algorithm is as 

follows: 
        for  i=0 ; i < k ; i++   do { 

         it = (X* 0
,m ) mod b 

         x  = x + i
imbt  } 

         x  = x div kb  
         if  (X≥m) then  
         x  = x - m 
 
 
Barrett reduction was inspired by fast division algorithm 

that multiply the reciprocal of the divisor to emulate division. 
This reduction technique is advantageous in a modular 
exponentiation where many reductions are performed with the 
same modulus[1]. It was the first approach to perform 
reduction without explicitly using the division step in the 
loop. P.Barrett introduced the idea of estimating the quotient 
Q = A div M with operations that either are less expensive 
than a multiprecision division by M [2]. The estimate for Q’ 
of  A div M is obtained by replacing the floating-point 
divisions in 
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Q = ⎣ ⎦tktk bMbbA /)/)(/( 22 −  by integer division  

Q’ = ((Adiv tkb −2 )μ )div tb    where μ  = ⎥
⎦

⎥
⎢
⎣

⎢
M

b k2

 

The number of multiplications and the resulting error is 
more or less independent of t. The best choice for t, resulting 
in the least number of operations and the smallest maximal 
error is t=k+1. The algorithm is follows: 
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    1. Pre-calculation 

        1.1  μ  =  ⎥
⎦
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⎣
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    2.  Calculation of the quotient 

        2.1 Q ← ⎥⎦
⎥

⎢⎣
⎢

+1kb

A
 μ  

        2.2 Q’← ⎥⎦
⎥

⎢⎣
⎢

+1kb

Q
  

    3.  Compute the remainder 

         3.1 1R ← A mod 1+kb  

         3.2 2R ← (Q’*M) mod 1+kb  

         3.3  R  ← 1R  - 2R  

     4.  Correction  of the result 

          4.1  if  R < 0  then  R +   1+kb   
          4.2  while R≥  M   do  R ← R - M 
 

III. PROPOSED ALGORITHM 

For computing X=AmodM without division and 
multiplication the following algorithm is suggested: 
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1.  Pre-calculation 

   1.1  X ← A mod n2  ,   S ← n2 - M 
   1.2  While  X ≥  M  do  X ← X – M 
   1.3  While   S  > M  do  S  ← S –  M 
2.  Computation X 
  2.1 for  i = n ;  i  < t  ; i++  do  { 

  2.2  if   ia = 0  then   step 3 

  2.3   X ← X + S 
  2.4   if  X ≥  M   then  X ← X – M 
3.  Correction S 

  3.1   S  ← S  +  S 
  3.2  if   S ≥  M    then    S  ← S –  M   } 
4.   return  ( X ) 
 
   Step 1 involves pre-calculated  of X and S. The 

expression of A may be written in the following way: 
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 mod M  and   S = n2  mod M 

In algorithm RSA  t≤ 2n  because always  A < 2M  

In step 2, the current bit ia  is checked and if it is =1 the 

current value of X is corrected. 
Step 3 is related preparation of S for the next cycle  i+1 
If the checking of i  is performed before step 3 , the 

calculation will be reduced by time for thelast preparation of 
S. 

 
In base b>2 the following algorithm is suggested: 
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1.  Pre-calculation 

   1.1  X ← A mod nb  ,   S ← nb - M 
   1.2  While  X ≥  M  do  X ← X – M 
   1.3  While   S  > M  do  S  ← S –  M 
2.  Computation X 
  2.1 for  i = n ;  i  < t  ; i++  do  { 
  2.2 for  j = 0 ;  j < b  ; j++  do { 

  2.3  if   jia + = 1  then   X ← X + S 

  2.4   if  X ≥  M   then  X ← X – M 
3.  Correction S 
  3.1   S  ← S  +  S 
  3.2  if   S ≥  M    then    S  ← S –  M   }} 
4.   return  ( X ) 
 
When is selected base b > 2 , he number of the external 

cycles is reduced. 
When there is a larger bulk of operation memory it is 

possible to reduce the operating time.  In step 1 is calculated: 

  kn
k bS +← - M   for k=0 to b-1 

Calculated values for kS are used to calculate X ← X + S 

without multiplication in step 2. In this case, step 3 is outside 
of the internal cycle 
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IV. CONCLUSION 

In the known algorithms for modular reduction pre-
calculations are carried out in order to change the module to 

2b of 2 for faster processing of blocks of data. These 
calculations involve multiplication and division of large 
integers.  The proposed algorithm uses only elementary 
operations of rotation, addition and subtraction without 
division and multiplication. 

The algorithm can be employed in applications using 
microcontrollers with smaller computing capabilities without 
hardware multipliers. In addition, the efficiency and reliability 
of the algorithm is higher when processing small amounts of 
data due to the elementary pre-calculations. Therefore, it can 
be used to exchange session keys for symmetric algorithms.  
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