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Abstract – During conducted measurements the reflection is 
one of the most varyingcomponents of the measurement 
uncertainty. For studying the cable reflections, in this paper we 
make a simple computer model and compare its output with 
measured results. 
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I. INTRODUCTION 

Well known formula [1] for the solution of telegrapher’s 
equations is 
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Here,A and B are the complex amplitudes of the forward and 
reflected waves in the transmission line, andα, βare the real 
and imaginary parts of the propagation constant 
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In this case R, L, G and C are the per-unit-length parameters 
of the transmission line. 

The velocity of the waves in the guide also depends on the 
cable parameters as 
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Well known is the effect of the reflection if the load 

impedance (ZLin Fig.1) is not matched with waveguide 
impedance (Z0 in Fig.1).The complex voltage reflection 
coefficient (Γ) is 

 
0

0

ZZ

ZZ

A

B

L

L




 ,  (4) 

 

 

Fig. 1. Reflection at load 
 

 
The characteristic impedance of the transmission line is 

expressed as [2] 
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In case of conducted power measurements the reflection 
causes uncertainty. In this article we made a simple model to 
study the effect of multiple reflections. 

The first step in developing a simulation model of the 
studied system is to know the precise properties of the 
measured transmission lines.One of the most important 
property of the reflection simulation is the β propagation 
constant of the used cables. 

II. STUDY OF PROPAGATION VELOCITY IN 

COAXIAL CABLES 

As Eq. (1) shows, the waves in the lossless transmission 
lines havea periodicity in time and space in case of sinusoidal 
excitation. 
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Measuring the propagation velocity a short circuited 
transmission line can be carried out as Fig. 2 shows. 

The first attenuation (S21) maximum belongs to the 
resonance frequency of the L long cable under test. The 
velocity factor in the cable under test is 
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where f is the resonance frequency of the cable under test, and 
c is the speed of the waves in free space 299 792 458 m/sas 
Eq. (3) sows. 
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Fig. 2. Measurement setup for propagation velocity 
 

Generally the observed frequency is determined by the 
length of the cable under test (L). Instead of applying different 
lengths of cables higher harmonics of the resonance can be 
used for determining the frequency dependence of the velocity 
factor and thus the dielectric constant. 

 

 

Fig. 3. The 1st resonance of the CUT (1) at 39.1000 MHz, with cable 
length 11.290 m. In the picture the minimum of the S12can be seen at 

MARKER 1. 
 

 
Unfortunately, for low frequency examination of the 

velocity factor this method needs long cable length(L). The 
radiation of the open ended cablesintroduce more resonance 
disturbances, therefore it is worth to use two times longer 
short circuited cables for the precise measurements. 

In this article the Cable Under Test (CUT) types are (1) 
Hirschmann KOKA 709 (75 Ω), and (2) H155 (50 Ω) low loss 
coaxial cables. The Fig. 3 shows the velocity 
factor’sfrequency dependency. The frequency dependency of 
ε can be calculated from Eq. (3), too. 
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Fig. 4. Frequency dependency of velocity factor 
of  (1) KOKA 709 and (2) H155 coaxial cables 

 
 
wavelength variability have to be taken care of, at the same 

time. Therefore the used algorithm is 
(1) seek the lowest resonance frequency (f1), 
(2) seek the next resonance frequency (f2) near 2·f1, 
(3) seek the nth resonance frequency (fn) near n·fn-1/(n−1). 
By using automated measurement control the algorithm can 

followed easily, but at manually measured values, if you want 
to measure at near discrete frequencies, it is difficult to 
identify the order number of resonances because of the 
frequency dependency of the cable parameters. 

As Fig. 2 shows for the test we have to use loose coupling 
between the CUT and the measuring loop for decreasing the 
unwanted impedance transformation into the measured 
transmission line. In this case the minimumof S12 can be 
smaller as Fig. 3 shows. 

As Fig 4 shows, from 100 MHz to 1000 MHz the 
variability of velocity factor is not dominant, therefore in the 
next model we use constant instead of it. 

III. MODEL ELEMENTS FOR MULTIPLE REFLECTON 

OF TRANSMISSION LINE 

A. Generator 

The RF generator can be represented by itsoutput 
impedance (Zg), and output voltage (Vg), at the nececcary 
frequency, of course. In practice Vg is calculable from the 
output power and Zg, if it is matched. If the load impedance of 
the generator varies a lot, instead of the output power the emf 
(electromotive force) value should be used, witch is the output 
voltage of a generator without any load. This value is two 
times higher then the matched case. 

In our model the generator output voltage is 

 )cos()( 0 tVtVg   .  (7) 

Instead, by introducingAg as forward complex peak amplitude, 
the generator voltage can be expressed as 

 ,  (8) )()( tj
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B. Transmission line  

 

Fig. 5. Transmission line model 
 

The Agforward wavein the line at place xis  
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Fig. 6. The real(A(x,t)) voltage in the transmission line 
(L=10m, Ag=10V, t=0, α=0.1, f=300MHz) 

 
Observing the voltage of the transmission line in one 

period, its form can be seen in Fig. 7. 

 

Fig. 7. Voltage in the transmission line 
(L=10m, Ag=10V, t=0…T, α=0.1, f=300MHz) 

 
The B forward wave in the line at place xis  
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The forward and reflected voltage at t=0 is shown in Fig. 8. 
forΓ= −1, and inFig. 9. forΓ= +1. 

 

Fig. 8. Reflected voltage in the transmission line as a function of 
x(L=10m, Γ= −1) 

 

 

Fig. 9. Reflected voltage in the transmission line as a function of the 
distance x (L=10m, Γ= +1) 

 
The voltage in the transmission line can be got by  

 ))()(()( xBxArealxV  .  (12) 

The voltage shape in the transmission line for one period 
with ZL=0 and with ZL=∞can be seen in Figs. 10 and 11. 

 

Fig. 10. Wave in the loss transmission line as a function of x 
(L=10m, Γ= −1, f=100 MHz) 

 

 

Fig. 11. Wavew in the loss transmission line as a function of x 
(L=10m, Γ= +1, f=100 MHz) 
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     212]1[2 00  BA .  (19) The difference depends on the load, as it can be seen at the  
above plots at the cable ends (x=10 m). 
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Fig. 12. Cascade coupled transmission lines 
 

IV. CONCLUSION 

 
Generally the higher order reflections are not dominant, i.e.,  
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The input impedance of the 3rd transmission line in general 
case is [3] 

The phases of the 1st, 2nd etc. reflected waves will be the same. 
The simulation result by SciLab [4] can be seen in Fig. 13. 
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In case of lossless transmission lines, where α=0 
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Fig. 13. A20+B20(lower curve), and A2*+B2*(upper curve) in the 
transmission line(L=1.62m, α=0.01, ZG=Z01=Z03=50Ω, Z02=75Ω) 

 

The reflection coefficient at step Z01→Z02 is Γ12 from 
Eqs. (4) and(13). In this simple model the Zg=Z01, Z03=ZL, 
therefore there are no reflections at the generator and at the 
load. 

The input voltage of the 2nd line must be equal to the 
voltage of the 1st line at the end. (It depends on the Γ12.) At the 
end of 1st line the voltage is V2IN 
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