The Effects of Multiple Reflection in Conducted RF Measurements

András Fehér ${ }^{1}$ and Szilvia Nagy ${ }^{2}$

Abstract

During conducted measurements the reflection is one of the most varyingcomponents of the measurement uncertainty. For studying the cable reflections, in this paper we make a simple computer model and compare its output with measured results.

Keywords- Reflection, frequency dependency of velocity factor, measurement, measurement uncertainty.

I.INTRODUCTION

Well known formula [1] for the solution of telegrapher's equations is

$$
\begin{align*}
v(x, t) & =|A| \cdot \cos (\omega \cdot t-\beta \cdot x) \cdot e^{-\alpha \cdot x} \\
& +|B| \cdot \cos (\omega \cdot t+\beta \cdot x) \cdot e^{\alpha \cdot x} \tag{1}
\end{align*}
$$

Here, A and B are the complex amplitudes of the forward and reflected waves in the transmission line, and α, β are the real and imaginary parts of the propagation constant

$$
\begin{equation*}
\gamma=\alpha+j \beta=\sqrt{(R+j \omega L)(G+j \omega C)} . \tag{2}
\end{equation*}
$$

In this case $\mathrm{R}, \mathrm{L}, \mathrm{G}$ and C are the per-unit-length parameters of the transmission line.
The velocity of the waves in the guide also depends on the cable parameters as

$$
\begin{equation*}
v=\frac{\omega}{\beta}=\frac{1}{\sqrt{L \cdot C}}=\frac{1}{\sqrt{\varepsilon \cdot \mu}}=\frac{c}{\sqrt{\varepsilon_{r} \cdot \mu_{r}}} \tag{3}
\end{equation*}
$$

Well known is the effect of the reflection if the load impedance (Z_{L} in Fig.1) is not matched with waveguide impedance (Z_{0} in Fig.1).The complex voltage reflection coefficient (Γ) is

$$
\begin{equation*}
\Gamma=\frac{B}{A}=\frac{Z_{L}-Z_{0}}{Z_{L}+Z_{0}}, \tag{4}
\end{equation*}
$$

[^0]

Fig. 1. Reflection at load

The characteristic impedance of the transmission line is expressed as [2]

$$
\begin{equation*}
Z_{0}=\frac{V^{+}}{I^{+}}=\sqrt{\frac{R+j \omega L}{G+j \omega C}} . \tag{5}
\end{equation*}
$$

In case of conducted power measurements the reflection causes uncertainty. In this article we made a simple model to study the effect of multiple reflections.

The first step in developing a simulation model of the studied system is to know the precise properties of the measured transmission lines.One of the most important property of the reflection simulation is the β propagation constant of the used cables.

II. Study of Propagation Velocity in Coaxial Cables

As Eq. (1) shows, the waves in the lossless transmission lines havea periodicity in time and space in case of sinusoidal excitation.

$$
\begin{equation*}
v(x, t)=V\left(0, t-\frac{x}{v}\right) . \tag{6}
\end{equation*}
$$

Measuring the propagation velocity a short circuited transmission line can be carried out as Fig. 2 shows.

The first attenuation $\left(S_{21}\right)$ maximum belongs to the resonance frequency of the L long cable under test. The velocity factor in the cable under test is

$$
\begin{equation*}
V f=\frac{\lambda_{c}}{\lambda_{0}}=\frac{2 \cdot L}{\lambda_{0}}=\frac{2 \cdot L \cdot f}{c} \tag{6}
\end{equation*}
$$

where f is the resonance frequency of the cable under test, and c is the speed of the waves in free space $299792458 \mathrm{~m} / \mathrm{sas}$ Eq. (3) sows.

Fig. 2. Measurement setup for propagation velocity
Generally the observed frequency is determined by the length of the cable under test (L). Instead of applying different lengths of cables higher harmonics of the resonance can be used for determining the frequency dependence of the velocity factor and thus the dielectric constant.

Fig. 3. The $1^{\text {st }}$ resonance of the CUT (1) at 39.1000 MHz , with cable length 11.290 m . In the picture the minimum of the S_{12} can be seen at MARKER 1.

Unfortunately, for low frequency examination of the velocity factor this method needs long cable length (L). The radiation of the open ended cablesintroduce more resonance disturbances, therefore it is worth to use two times longer short circuited cables for the precise measurements.

In this article the Cable Under Test (CUT) types are (1) Hirschmann KOKA 709 (75Ω), and (2) H155 (50 Ω) low loss coaxial cables. The Fig. 3 shows the velocity factor'sfrequency dependency. The frequency dependency of ε can be calculated from Eq. (3), too.

Fig. 4. Frequency dependency of velocity factor of (1) KOKA 709 and (2) H155 coaxial cables
wavelength variability have to be taken care of, at the same time. Therefore the used algorithm is
(1) seek the lowest resonance frequency $\left(f_{1}\right)$,
(2) seek the next resonance frequency $\left(f_{2}\right)$ near $2 \cdot f_{1}$,
(3) seek the $n^{\text {th }}$ resonance frequency $\left(f_{n}\right)$ near $n \cdot f_{n-1} /(n-1)$.

By using automated measurement control the algorithm can followed easily, but at manually measured values, if you want to measure at near discrete frequencies, it is difficult to identify the order number of resonances because of the frequency dependency of the cable parameters.

As Fig. 2 shows for the test we have to use loose coupling between the CUT and the measuring loop for decreasing the unwanted impedance transformation into the measured transmission line. In this case the minimumof S12 can be smaller as Fig. 3 shows.

As Fig 4 shows, from 100 MHz to 1000 MHz the variability of velocity factor is not dominant, therefore in the next model we use constant instead of it.

III. Model Elements for Multiple Reflecton of Transmission Line

A. Generator

The RF generator can be represented by itsoutput impedance $\left(Z_{g}\right)$, and output voltage $\left(V_{g}\right)$, at the nececcary frequency, of course. In practice V_{g} is calculable from the output power and Z_{g}, if it is matched. If the load impedance of the generator varies a lot, instead of the output power the emf (electromotive force) value should be used, witch is the output voltage of a generator without any load. This value is two times higher then the matched case.

In our model the generator output voltage is

$$
\begin{equation*}
V_{g}(t)=V_{0} \cdot \cos (\omega \cdot t) \tag{7}
\end{equation*}
$$

Instead, by introducing A_{g} as forward complex peak amplitude, the generator voltage can be expressed as

$$
\begin{equation*}
V_{g}(t)=\operatorname{real}\left(A_{g} \cdot e^{j \omega t}\right) \tag{8}
\end{equation*}
$$

B. Transmission line

Fig. 5. Transmission line model
The A_{g} forward wavein the line at place xis

$$
\begin{equation*}
A(x)=A_{g} \cdot e^{-\alpha x} \cdot e^{-j \beta x} \tag{9}
\end{equation*}
$$

and

$$
\begin{equation*}
A(x, t)=A_{g} \cdot e^{-\alpha \cdot x} \cdot e^{-j \cdot \beta \cdot x} \cdot e^{j \cdot \omega \cdot t} \tag{10}
\end{equation*}
$$

Fig. 6. The $\operatorname{real}(A(x, t))$ voltage in the transmission line $\left(L=10 \mathrm{~m}, A_{g}=10 \mathrm{~V}, t=0, \alpha=0.1, f=300 \mathrm{MHz}\right)$

Observing the voltage of the transmission line in one period, its form can be seen in Fig. 7.

Fig. 7. Voltage in the transmission line ($\mathrm{L}=10 \mathrm{~m}, \mathrm{~A}_{\mathrm{g}}=10 \mathrm{~V}, \mathrm{t}=0 \ldots \mathrm{~T}, \alpha=0.1, \mathrm{f}=300 \mathrm{MHz}$)

The B forward wave in the line at place xis

$$
\begin{align*}
& B(x, t)=B_{0} \cdot e^{-\alpha l} \cdot e^{-j \beta l} \cdot e^{j \cdot \omega \cdot t}= \\
& {\left[A_{g} \cdot e^{-\alpha \cdot L} \cdot e^{-j \cdot \beta \cdot L} \cdot \Gamma\right] \cdot e^{(x-L) \cdot \alpha} \cdot e^{j \cdot(x-L) \cdot \beta} \cdot e^{j \cdot \omega \cdot t}} \tag{11}
\end{align*}
$$

The forward and reflected voltage at $t=0$ is shown in Fig. 8. for $\Gamma=-1$, and inFig. 9. for $\Gamma=+1$.

Fig. 8. Reflected voltage in the transmission line as a function of $x(L=10 \mathrm{~m}, \Gamma=-1)$

Fig. 9. Reflected voltage in the transmission line as a function of the distance $x(L=10 \mathrm{~m}, \Gamma=+1)$

The voltage in the transmission line can be got by

$$
\begin{equation*}
V(x)=\operatorname{real}(A(x)+B(x)) . \tag{12}
\end{equation*}
$$

The voltage shape in the transmission line for one period with $Z_{L}=0$ and with $Z_{L}=\infty$ can be seen in Figs. 10 and 11.

Fig. 10. Wave in the loss transmission line as a function of x ($L=10 \mathrm{~m}, \Gamma=-1, f=100 \mathrm{MHz}$)

Fig. 11. Wavew in the loss transmission line as a function of x ($L=10 \mathrm{~m}, \Gamma=+1, f=100 \mathrm{MHz}$)

The difference depends on the load, as it can be seen at the above plots at the cable ends ($x=10 \mathrm{~m}$).
C. Transmission line steps

Fig. 12. Cascade coupled transmission lines

The input impedance of the $3^{\text {rd }}$ transmission line in general case is [3]

$$
\begin{equation*}
Z_{i n}=Z_{0} \cdot \frac{Z_{L}+Z_{0} \cdot \operatorname{th}(\gamma L)}{Z_{0}+Z_{L} \cdot \operatorname{th}(\gamma L)} . \tag{13}
\end{equation*}
$$

In case of lossless transmission lines, where $\alpha=0$

$$
\begin{equation*}
Z_{i n}=Z_{0} \cdot \frac{Z_{L}+j \cdot Z_{0} \cdot \operatorname{tg}(\beta L)}{Z_{L}+j \cdot Z_{0} \cdot \operatorname{tg}(\beta L)} \tag{14}
\end{equation*}
$$

The reflection coefficient at step $Z_{01} \rightarrow Z_{02}$ is Γ_{12} from Eqs. (4) and(13). In this simple model the $Z_{g}=Z_{01}, Z_{03}=Z_{L}$, therefore there are no reflections at the generator and at the load.

The input voltage of the $2^{\text {nd }}$ line must be equal to the voltage of the $1^{\text {st }}$ line at the end. (It depends on the Γ_{12}.) At the end of $1^{\text {st }}$ line the voltage is $V_{\text {2IN }}$

$$
\begin{gather*}
V_{2}\left(x_{2}=0\right)=\operatorname{real}\left(A\left(x_{1}=L_{1}\right)+B\left(x_{1}=L_{1}\right)\right) \tag{15}\\
B=\Gamma \cdot A \tag{16}
\end{gather*}
$$

Therefore

$$
\begin{equation*}
A_{2}(0)=A_{1}\left(L_{1}\right) \cdot\left[1+\Gamma_{12}\right] \tag{17}
\end{equation*}
$$

At step $Z_{02} \rightarrow Z_{03}$ the reflection is Γ_{23}, therefore the reflected value is

$$
\begin{equation*}
B_{2}\left(L_{2}\right)=A_{2}\left(L_{2}\right) \cdot \Gamma_{23} \tag{18}
\end{equation*}
$$

This reflected wave is reflecting at step $\mathrm{Z}_{02} \rightarrow \mathrm{Z}_{01}$

IV.Conclusion

Generally the higher order reflections are not dominant, i.e.,

$$
\begin{equation*}
A_{2 *}(0) \sim A_{2}(0)+\sum_{i=1}^{\infty}\left(\Gamma_{23} \cdot \Gamma_{21}\right)^{i} \tag{21}
\end{equation*}
$$

The phases of the $1^{\text {st }}, 2^{\text {nd }}$ etc. reflected waves will be the same. The simulation result by SciLab [4] can be seen in Fig. 13.

Fig. 13. $A_{20}+B_{20}$ (lower curve), and $A_{2 *}+B_{2 *}$ (upper curve) in the transmission line ($L=1.62 \mathrm{~m}, \alpha=0.01, Z_{\mathrm{G}}=Z_{01}=Z_{03}=50 \Omega, Z_{02}=75 \Omega$)

AcKnowledgement

This work was supported by the Bolyai Janos Research fellowship of the HungarianAcademy of Sciences and the TáMOP 4.2.1.A project of the SzéchenyiIstvánUniversity.

REFERENCES

[1] M. Kuczmann, A. Iványi, Finite Element Method in Magnetics, Academic Press, Budapest, 2008, ISBN: 9789630586498.
[2] Kuczmann,Finite Element Modeling of Antenna FeedingActa Technica Jaurinensis, Vol. 3 No.1, 2010, pp. 127-136
[3] Istvánffy, Edvin, Transmission Lines, Antennas, Wave propagation (Tápvonalak, antennák, hullámterjedés), Budapest, Tankönyvkiadó, 1987.
[4] SciLab 5.3 The Free Software for Numerical Computation. http://www.scilab.org

[^0]: ${ }^{1}$ Andras FEHÉR, Széchenyi István University, Radio Frequency Test Laboratory, Egyetem tér 1, Győr, Hungary, H-9026 E-mail: afeher@sze.hu.Web: http://rf.sze.hu
 ${ }^{2}$ SzilviaNAGY, Széchenyi István University, Department of Telecommunications, Egyetem tér 1, Győr, Hungary, H-9026 E-mail: nagysz@sze.hu.Web: http://ta.sze.hu

