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Algorithm for Object Recognition and Tracking on FPGA 
Rosen Spirov1, Dimiter Kovachev2 

Abstract – The paper presents the FPGA implementation for 
detecting the position of a moving object in a video sequence. By 
optical flow algorithms is possible to determine the approximate 
relative motion of the object. The frames are collected, 
subtracted from the background, filtered, enhanced and then the 
points are computed. 
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I. INTRODUCTION 

Optical Flow is a useful method in the object tracking 
branch and it can calculate the motion of each pixel between 
two frames, and thus it provides a possible way to get the 
trajectory of objects [1]. When the camera moves, a global 
motion will be added tothe local motion, which complicates 
the issue. Among the several tracking methods, point tracking 
is easy as shown in Fig.1. 

 
Fig.1The tracking methods 

 
Objects detected in consecutive frames are represented by 

points and the association of the points is based on the 
previous object state which can include object position and 
motion. We  first  use  image  correlation to  determine  the  
global  motion,  and  subtract the  global motion  for each 
pixel in the  image so only local motion  remains.   We ran the 
optical flow on the modified frames and calculated the 
motion.  This motion data is stored for tracking, requiring that 
we store all the Optical Flow data of all the pixels in each 
frame [2].  Having the data for all the pixels in each frame 
ensures that we can check each pixel’s motion in each frame. 

In this thesis we use a combination of optical flow and 
image correlation to deal with this problem, and have good 
experimental results.For trajectory estimation, we incorporate 
a Kalman Filter with the optical flow. Not only have to 
smooth the motion history, but have to estimate the motion 
into the next frame. The addition of a spatial-temporal filter 
improves the results in our later process. 

The basic hardware architecture, using extended Kalman 
filter-based method for calculating a trajectory by tracking 
features at an unknown location on Earth’s surface, provided 
the topography is known, is given in [3]. The proposed model 
is implemented using VHDL and simulated and synthesized 
into an FPGA. The  hardware design was implemented on an 
Altera DE2 board and Quartus II tools. 

Traditionally Kalman filtering has proved to be 
satisfactorily in resolving many problems involved in 
predicting the position of moving targets [4], and is even 
useful for complex motion prediction. The capability of 
Kalman filtering to predict position allows us to overcome the 
artefact produced by this inherent processing latency, thus 
increasing the system’sreliable detection distance. 

 
Fig.2.  Navigation-changes in perceived location of the normal point 

between scan i and scan j are applied to estimate position changes 
 
In Fig.2ΔR is the delta position vector, displacement vector 

between scans i, at time ti, and scan j, at time tj, in this case); 
ni is the plane normal vector whose components are resolved 
in the Ladar body frame at scan epoch ti; nj is the plane 
normal vector whose components are. Note that in the 
navigation frame, the planar surface normal vectors at epoch’s 
ti and tj are equal since resolved in the Ladar body frame at 
scan epoch tj; and, ρi and ρj are the shortest distances from the 
Ladar to the plane at epochs ti and tj, respectively stationary 
planar surfaces are assumed. However, expressed in the Ladar 
body frame both normal vectors are likely to be unequal due 
to the body frame rotation between epoch’s ti and tj. From the 
geometry presented in Fig.1, a relationship can be derived 
between the projection of the displacement vector (between 
epoch’s ti and tj) onto the planar surface normal vector and 
the change in the normal point range between scans i and j is 
shown in Eq.1:  

 ΔR ⋅ ni = ρi − ρ j    (1) 
Given M associated planar surfaces, a set of linear 

equations like (7) can be set up in matrix form is given in 
Eq.2: 

 H ⋅ Δ R = Δ ρ   (2) 
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Note that a minimum of three non-collinear planar surfaces 
is required for the observation matrix, H, to be non-singular 
and thus allowing for a unique solution of Eq.2. The dynamic-
state INS (Integrated Navigation Systems) calibration uses a 
Kalman filter to periodically estimate inertial error states. The 
estimation process is based on a complementary Kalman filter 
methodology [4] which employs differences between INS and 
laser scanner observables as filter measurements. 
Correspondingly, laser scanner observables of the Kalman 
filter are formulated as follows for the scan at time epoch tm in 
Eq.4: 

ΔρLS ( t m ) =
ρ1( t m −1 ) − ρ1 ( t m )

...
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where N is the number of features for which is match is 
found time epoch tm  and  tm-1. Equivalent observables can be 
synthesized from INS measurements by transformation of the 
INS displacement vector into the range domain as follows in 
Eq.5 and Eq.6: 

  
ΔρINS ( t m ) = H ( tm −1) ΔR INS ( tm ) + ΔC b

n ( tm )l b( )(5) 

  ΔC b
n ( t m ) = C b

n ( t m ) − C b
n ( tm −1 )  (6) 

As mentioned previously, filter measurements are defined 
as differences between inertial and laser scanner observables 
Eq.7: 

y Kalman ( tm ) = ΔρINS ( tm ) − ΔρLS ( tm )  (7) 
 The filter operates with dynamic states only. Particular 

filter states include: errors in position changes between 
consecutive scans, velocity errors, attitude errors, gyro biases, 
and accelerometer biases in Eq.8:  

δ x = δ Δ R n
T δ v n

T ψ T a b
T b b

T[ ]T  (8) 

For this state vector, the observation matrix HKalman can be 
derived directly by augmenting the geometry matrix of Eq.3 
with zero elements is shown in Eq.9: 
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   The measurement noise matrix RKalman is derived from the 
line and planar surface estimation processes performing a 
comprehensive covariance analysis of the feature extraction 
method. As a result, the current position error contributes to 
the position error for the next scan where the new line is used 
for navigation. A position drift is thus created. Statistics of 
image sequences and noise can be estimated if these signals are 
really stationary. Generaladaptive3-D spatial-temporal filters 
are very complex and prohibitive for real-time 
implementation[5]. One advantages of KalmanFilter is that it 
does not need all the motion history to estimate the next stage 
motion, itjust needs the nearest one from the current motion. 

The video sequences captured from the aircraft are quite 
noisy in nature. If we can get rid of some of the noise, the 
Kalman Filter will provide us with a better result. Based on 
the relationship of some neighbor pixels and the same pixel in 
several adjacent frames, we want to use the spatial or temporal 
filters before running Kalman Filter to delete the noisy data. 
The spatial filter is described as Eq.10: 
Ptnew=1/2Pt +1/16(Nt1+ Nt2+ ……+ Nt8)(10) 

where Ptis the central pixel of a 3 x3 block, 
Nt1Nt2….Nt8are the eight neighbors of the central pixel Pt, 
Ptnewis the new value of P. The second filter is a temporal 
filter. In this approach the motion of a given pixel is 
correlated with motion of the same pixel in neighboring 
frames in time in Eq.11. 

Ptnew=1/2Pt +1/4(Pt-1+ Pt+1)(11) 
where Pt is the middle frame of three adjacent frames in a 

video sequence, Pt-1 and Pt+1are the previous frame and the 
next frame, Ptnew is the new value of Pt. In our experiment, 
we run the spatial filter first, save the filtered data, and then 
run the temporal filter on the saved data. This combination is 
a spatial-temporal filter. In our work, the spatial-temporal 
filter works well. The areas marked with circles are the local 
motions, shown in fig.3. 

 

 
 

Fig.3The frame from aerial video and its global motion removed 
version 

The global motion removal step, the image correlation can 
just get integral magnitude, so the global motion detected can 
not reflect the real sub-pixel displacement, there is error 
existing. In order to delete the disturbing noisy points, we set 
a threshold in the data pool. In the following figures, we know 
all the targets are moving upwards, so we delete all the other 
directions' information. After that, a clean result will be 
shown in fig. 4. 

 Fig.4 The local motion detection and with threshold and 
spatial filter 

 
After setting the threshold, we run the spatial filter first, we 

find that it could increase the density of the object's vector 
cluster, since the filter constrains the relationship among the 
pixels come from the same region so it can help pixel modify 
its optical flow result according to the neighbors' data. Then, 
we run the temporal filter after the spatial filter. The spatial-
temporal filter increases the density of the targets further. It is 
good for the estimation process. 

 
 
 
 



 

707 

II.ALGORITHM FOR OBJECTRECOGNITION 
 
Each frame is fed into the program which subjects the 

frame to process of object recognition to achieve a noise free 
enhanced image containing only the object. At the rate of 1 
frame per second, the enhanced image is fed to the tracking 
program. This analyzes each frame and computes the first 
white pixel that represents the object. This is under the 
assumption that object is made up of uniform material. This 
point is then plotted on a new image as the first position of the 
object. Subsequent frames are collected, subtracted from the 
background, filtered, enhanced and then the points are 
computed. The program of the combination of Threshold, 
Spatial-Temporal Filter, and Kalman Filter acquires the 
frames and plots the individual points. The code is: 

%% read from the .txt file 
filename1='ofx%d.txt'; 
filename2='ofy%d.txt'; 
filename3='spatialofx%d.txt'; 
filename4='spatialofy%d.txt'; 
filename5='temporalofx%d.txt'; 
filename6='temporalofy%d.txt'; 
filename9='zx.txt'; 
filename10='zy.txt'; 
imgname='original%d.jpg'; 
imgname1='original_shreshhold%d.jpg'; 
imgname2='original_spatial_filter%d.jpg'; 
imgname3='original_temporal_filter%d.jpg'; 
for index=2:30 
a=sprintf(filename1,index); 
b=sprintf(filename2,index); 
fid=fopen(a); 
[flowx,countx]=fscanf(fid,'%f'); 
fclose(fid); 
fid=fopen(b); 
[flowy,county]=fscanf(fid,'%f'); 
fclose(fid); 
%%change the data to the image format…… 
%% spatial filter……………… 
%%change the data to the image format……. 
%%temporal filter………… 
%% kalman filter data prepare part 
row=168; 
col=145; 
fid=fopen('icx.txt','r'); 
[icx,countx]=fscanf(fid,'%f'); 
fclose(fid); 
fid=fopen('icy.txt','r'); 
[icy,county]=fscanf(fid,'%f'); 
fclose(fid); 
ofx_kal(1:20)=0; 
ofy_kal(1:20)=0; 
%position update based on of 
for imgindex=3:22 
display(imgindex); 
a2=sprintf(filename5,imgindex); 
b2=sprintf(filename6,imgindex); 
fid=fopen(a2,'r'); 
[ofx,count]=fscanf(fid,'%f',[200,200]); 
ofx=ofx'; 
fclose(fid); 
fid=fopen(b2,'r'); 
[ofy,count]=fscanf(fid,'%f',[200,200]); 
ofy=ofy'; 
fclose(fid); 
ofx_update(imgindex-2)=ofx(row,col); 
ofy_update(imgindex-2)=ofy(row,col); 
row=row+ofy_update(imgindex-2)+icy(imgindex); 
col=col+icx(imgindex); 
row=round(row); 
col=round(col); 

ofx_kal(imgindex-2)=ofx_update(imgindex-2); 
ofy_kal(imgindex-2)=ofy_update(imgindex-2); 
end 
%% kalman filter data prepare part finished 
%% kalman filter main part 
%ZX,ZY are the testing data 
%SysX,SysY are the optimized state 
%PX,PY are the optimized state covariance 
%eSysX,eSysY are the estimated state 
%ePX,ePY are estimated state covariance 
%KgX,KgY are the kalman gain 
filename7='ofx_kal.txt'; 
filename8='ofy_kal.txt'; 
ZX=ofx_kal; 
ZY=ofy_kal; 
SysX_final(1:20)=0; 
SysY_final(1:20)=0; 
PX(1)=1; 
PY(1)=1; 
SysX_final(1)=-1; 
SysY_final(1)=-1; 
%for index_outside=2:11 
index_outside=2; 
SysX(1:20)=-1; 
SysY(1:20)=-1; 
for index=index_outside:index_outside+8 
eSysX(index)=SysX(index-1); 
eSysY(index)=SysY(index-1); 
ePX(index)=PX(index-1)+1; 
ePY(index)=PY(index-1)+1; 
KgX(index)=ePX(index)/(ePX(index)+0.05); 
KgY(index)=ePY(index)/(ePY(index)+0.05); 
PX(index)=(1-KgX(index))*ePX(index); 
PY(index)=(1-KgY(index))*ePY(index); 
SysX(index)=eSysX(index)+KgX(index)*(ZX(index)-eSysX(index)); 
SysY(index)=eSysY(index)+KgY(index)*(ZY(index)-eSysY(index)); 
SysX_final(index)=SysX(index); 
SysY_final(index)=SysY(index); 
%end 
fid=fopen(filename7); 
dlmwrite(filename7,SysX_final,'delimiter',' ','newline','PC'); 
%fclose(fid); 
fid=fopen(filename8); 
dlmwrite(filename8,SysY_final,'delimiter',' ','newline','PC'); 
%fclose(fid); 
fid=fopen(filename9); 
dlmwrite(filename9,ZX,'delimiter',' ','newline','PC'); 
fid=fopen(filename10); 
dlmwrite(filename10,ZY,'delimiter',' ','newline','PC'); 
fclose('all'); 
 

 
Fig.5 System simulation on ModelSim-Altera. 

The advantage of parallel processing in FPGA leads to a 
substantial increase in performance and accuracy in 
processing, extraction of information than in the simulation in 
Matlab as shown in fig.6 and simulation in fig.7. 
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Fig.6  Pixel Kalman Filter Calculation 

 

 
Fig.7 Behavioral simulation of the Kalman Filter 

III. RESULTS 

The above hardware design was implemented on an Altera 
Quartus II board and ModelSim, shown in fig.8and was able 
to operation time is about 60 clock cycle, which about 0.6us at 
100MHz clock pulse, so the operation speed can be up to 
1.5MHz. The whole design requires 4168 ALUTs and 241 
registers- occupancy of resources is about 49% as in Tab.1. 

 
Fig.8 The Altera DE2 board 

TABLE I 
Sr. No. Information  Count %use
1 Noofslice 2145of32640 7% 
2 Slice LUTs 3626of32640 14% 
3 SliceLUTs 

Used as logic 
3626of32640 14% 

4 LUTFlip- 
Fl.pair used 

4168  

5 
 

LUT Flip- 
Fl. pairs with 

2023of4168 49% 

6 LUT  Flip- 
Flop pair 

542of4168 17% 

7 Fully  used 
FFpairs 

1603of4168 41% 

8 BondedIOBs 82 of 480 21% 
9 DSP48Es 16 of 288 7% 

 
The output and parameters are alignet such that one 

memory controller can handle reads and writes to input 
buffers. Hardware resources for the parameter calculation 
approximately 1664 Logic Cells. When we compare the 
outputs obtained from Matlab and FPGA, we find the outputs 
obtained using the AlteraDE2CycloneIIFPGAkitare 

computationally efficient. The pixel values are scaled and the 
outputs are comparable to the ones obtained using Matlab. 
Comparison between Optical flow [6] and Kalman Filter 
estimation shows the tracking result in Tab2. 

TABLE II 
Frame Number  Optical Flow Kalman Filter
Frame1 -0.49883 -1
Frame2 -0.48995 -0.50219
Frame3 -0.48615 -0.54989
Frame4 -0.55982 -0.55775
Frame5 -0.65988 -0.65408
Frame6 -0.71012 -0.70244
Frame7 -0.42995 -0.43128
Frame8 -0.55981 -0.50974
Frame9 -0.45776 -0.46228
Frame10 -0.64996 -0.64356

 
One is from Optical Flow data and another one comes from 

the Kalman Filter estimation.  In the first two frames, the 
Kalman Filter needs a period to converge.  After the 
convergence, the Kalman Filter can estimate the motion well. 

IV. CONCLUSION 

Optical flow shows good results to detect and track the 
local motion, but suffers from some problems. One problem 
is when there exists both local and global motion. If these two 
kinds of motion exist at the  same time, we should use some 
method to remove the  global motion first and then run  
optical flow to detect the  remaining motion.  We used the  
image correlation first to delete  the global motion and then 
ran the optical flow to get the local motions. We also added 
the Kalman Filter to the project to smooth the motion history 
and estimate the future trajectory of objects. The threshold 
and spatial-temporal filter helped the Kalman Filter deleting 
most of the noise efficiently.  From the experimental results 
we see that this idea  could improve tracking results for aerial 
video.  Errors exist in the tracking process. Some are caused 
by the quality of the video, and others may caused by the 
algorithms limitations. 
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