

705

Algorithm for Object Recognition and Tracking on FPGA
Rosen Spirov1, Dimiter Kovachev2

Abstract – The paper presents the FPGA implementation for
detecting the position of a moving object in a video sequence. By
optical flow algorithms is possible to determine the approximate
relative motion of the object. The frames are collected,
subtracted from the background, filtered, enhanced and then the
points are computed.

Keywords– Image processing, Adaptive filtering, Kalman
filtering, FPGA, VHDL.

I. INTRODUCTION

Optical Flow is a useful method in the object tracking
branch and it can calculate the motion of each pixel between
two frames, and thus it provides a possible way to get the
trajectory of objects [1]. When the camera moves, a global
motion will be added tothe local motion, which complicates
the issue. Among the several tracking methods, point tracking
is easy as shown in Fig.1.

Fig.1The tracking methods

Objects detected in consecutive frames are represented by

points and the association of the points is based on the
previous object state which can include object position and
motion. We first use image correlation to determine the
global motion, and subtract the global motion for each
pixel in the image so only local motion remains. We ran the
optical flow on the modified frames and calculated the
motion. This motion data is stored for tracking, requiring that
we store all the Optical Flow data of all the pixels in each
frame [2]. Having the data for all the pixels in each frame
ensures that we can check each pixel’s motion in each frame.

In this thesis we use a combination of optical flow and
image correlation to deal with this problem, and have good
experimental results.For trajectory estimation, we incorporate
a Kalman Filter with the optical flow. Not only have to
smooth the motion history, but have to estimate the motion
into the next frame. The addition of a spatial-temporal filter
improves the results in our later process.

The basic hardware architecture, using extended Kalman
filter-based method for calculating a trajectory by tracking
features at an unknown location on Earth’s surface, provided
the topography is known, is given in [3]. The proposed model
is implemented using VHDL and simulated and synthesized
into an FPGA. The hardware design was implemented on an
Altera DE2 board and Quartus II tools.

Traditionally Kalman filtering has proved to be
satisfactorily in resolving many problems involved in
predicting the position of moving targets [4], and is even
useful for complex motion prediction. The capability of
Kalman filtering to predict position allows us to overcome the
artefact produced by this inherent processing latency, thus
increasing the system’sreliable detection distance.

Fig.2. Navigation-changes in perceived location of the normal point

between scan i and scan j are applied to estimate position changes

In Fig.2ΔR is the delta position vector, displacement vector

between scans i, at time ti, and scan j, at time tj, in this case);
ni is the plane normal vector whose components are resolved
in the Ladar body frame at scan epoch ti; nj is the plane
normal vector whose components are. Note that in the
navigation frame, the planar surface normal vectors at epoch’s
ti and tj are equal since resolved in the Ladar body frame at
scan epoch tj; and, ρi and ρj are the shortest distances from the
Ladar to the plane at epochs ti and tj, respectively stationary
planar surfaces are assumed. However, expressed in the Ladar
body frame both normal vectors are likely to be unequal due
to the body frame rotation between epoch’s ti and tj. From the
geometry presented in Fig.1, a relationship can be derived
between the projection of the displacement vector (between
epoch’s ti and tj) onto the planar surface normal vector and
the change in the normal point range between scans i and j is
shown in Eq.1:

 ΔR ⋅ ni = ρi − ρ j (1)
Given M associated planar surfaces, a set of linear

equations like (7) can be set up in matrix form is given in
Eq.2:

 H ⋅ Δ R = Δ ρ (2)
Were:

H =
n i,1

T

M

n i,M
T

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
, Δ r =

ρ i,1 − ρ j ,1

M

ρ i,M − ρ j ,M

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

(3)

1Rosen Spirov is with the Faculty of Electronic Engineering,
TechnicalUniversity - Varna, 1, Studentska Str., 9010 Varna,
Bulgaria,E-mail: rosexel@abv.bg.

2DimitеrKovachev is with the Faculty of Electronic Engineering,
TechnicalUniversity - Varna, 1, Studentska Str., 9010 Varna,
Bulgaria, E-mail: dmk@abv.bg.

706

Note that a minimum of three non-collinear planar surfaces
is required for the observation matrix, H, to be non-singular
and thus allowing for a unique solution of Eq.2. The dynamic-
state INS (Integrated Navigation Systems) calibration uses a
Kalman filter to periodically estimate inertial error states. The
estimation process is based on a complementary Kalman filter
methodology [4] which employs differences between INS and
laser scanner observables as filter measurements.
Correspondingly, laser scanner observables of the Kalman
filter are formulated as follows for the scan at time epoch tm in
Eq.4:

ΔρLS (t m) =
ρ1(t m −1) − ρ1 (t m)

...

ρ N (t m −1) − ρ N (t m)

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

(4)

where N is the number of features for which is match is
found time epoch tm and tm-1. Equivalent observables can be
synthesized from INS measurements by transformation of the
INS displacement vector into the range domain as follows in
Eq.5 and Eq.6:

ΔρINS (t m) = H (tm −1) ΔR INS (tm) + ΔC b

n (tm)l b()(5)

 ΔC b
n (t m) = C b

n (t m) − C b
n (tm −1) (6)

As mentioned previously, filter measurements are defined
as differences between inertial and laser scanner observables
Eq.7:

y Kalman (tm) = ΔρINS (tm) − ΔρLS (tm) (7)
 The filter operates with dynamic states only. Particular

filter states include: errors in position changes between
consecutive scans, velocity errors, attitude errors, gyro biases,
and accelerometer biases in Eq.8:

δ x = δ Δ R n
T δ v n

T ψ T a b
T b b

T[]T (8)

For this state vector, the observation matrix HKalman can be
derived directly by augmenting the geometry matrix of Eq.3
with zero elements is shown in Eq.9:

H Kalman (t m) =
n1

T (t m −1) 0 L 0

M M O M

n M
T (t m −1) 0 L 0

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

(9)

 The measurement noise matrix RKalman is derived from the
line and planar surface estimation processes performing a
comprehensive covariance analysis of the feature extraction
method. As a result, the current position error contributes to
the position error for the next scan where the new line is used
for navigation. A position drift is thus created. Statistics of
image sequences and noise can be estimated if these signals are
really stationary. Generaladaptive3-D spatial-temporal filters
are very complex and prohibitive for real-time
implementation[5]. One advantages of KalmanFilter is that it
does not need all the motion history to estimate the next stage
motion, itjust needs the nearest one from the current motion.

The video sequences captured from the aircraft are quite
noisy in nature. If we can get rid of some of the noise, the
Kalman Filter will provide us with a better result. Based on
the relationship of some neighbor pixels and the same pixel in
several adjacent frames, we want to use the spatial or temporal
filters before running Kalman Filter to delete the noisy data.
The spatial filter is described as Eq.10:
Ptnew=1/2Pt +1/16(Nt1+ Nt2+ ……+ Nt8)(10)

where Ptis the central pixel of a 3 x3 block,
Nt1Nt2….Nt8are the eight neighbors of the central pixel Pt,
Ptnewis the new value of P. The second filter is a temporal
filter. In this approach the motion of a given pixel is
correlated with motion of the same pixel in neighboring
frames in time in Eq.11.

Ptnew=1/2Pt +1/4(Pt-1+ Pt+1)(11)
where Pt is the middle frame of three adjacent frames in a

video sequence, Pt-1 and Pt+1are the previous frame and the
next frame, Ptnew is the new value of Pt. In our experiment,
we run the spatial filter first, save the filtered data, and then
run the temporal filter on the saved data. This combination is
a spatial-temporal filter. In our work, the spatial-temporal
filter works well. The areas marked with circles are the local
motions, shown in fig.3.

Fig.3The frame from aerial video and its global motion removed
version

The global motion removal step, the image correlation can
just get integral magnitude, so the global motion detected can
not reflect the real sub-pixel displacement, there is error
existing. In order to delete the disturbing noisy points, we set
a threshold in the data pool. In the following figures, we know
all the targets are moving upwards, so we delete all the other
directions' information. After that, a clean result will be
shown in fig. 4.

 Fig.4 The local motion detection and with threshold and
spatial filter

After setting the threshold, we run the spatial filter first, we

find that it could increase the density of the object's vector
cluster, since the filter constrains the relationship among the
pixels come from the same region so it can help pixel modify
its optical flow result according to the neighbors' data. Then,
we run the temporal filter after the spatial filter. The spatial-
temporal filter increases the density of the targets further. It is
good for the estimation process.

707

II.ALGORITHM FOR OBJECTRECOGNITION

Each frame is fed into the program which subjects the

frame to process of object recognition to achieve a noise free
enhanced image containing only the object. At the rate of 1
frame per second, the enhanced image is fed to the tracking
program. This analyzes each frame and computes the first
white pixel that represents the object. This is under the
assumption that object is made up of uniform material. This
point is then plotted on a new image as the first position of the
object. Subsequent frames are collected, subtracted from the
background, filtered, enhanced and then the points are
computed. The program of the combination of Threshold,
Spatial-Temporal Filter, and Kalman Filter acquires the
frames and plots the individual points. The code is:

%% read from the .txt file
filename1='ofx%d.txt';
filename2='ofy%d.txt';
filename3='spatialofx%d.txt';
filename4='spatialofy%d.txt';
filename5='temporalofx%d.txt';
filename6='temporalofy%d.txt';
filename9='zx.txt';
filename10='zy.txt';
imgname='original%d.jpg';
imgname1='original_shreshhold%d.jpg';
imgname2='original_spatial_filter%d.jpg';
imgname3='original_temporal_filter%d.jpg';
for index=2:30
a=sprintf(filename1,index);
b=sprintf(filename2,index);
fid=fopen(a);
[flowx,countx]=fscanf(fid,'%f');
fclose(fid);
fid=fopen(b);
[flowy,county]=fscanf(fid,'%f');
fclose(fid);
%%change the data to the image format……
%% spatial filter………………
%%change the data to the image format…….
%%temporal filter…………
%% kalman filter data prepare part
row=168;
col=145;
fid=fopen('icx.txt','r');
[icx,countx]=fscanf(fid,'%f');
fclose(fid);
fid=fopen('icy.txt','r');
[icy,county]=fscanf(fid,'%f');
fclose(fid);
ofx_kal(1:20)=0;
ofy_kal(1:20)=0;
%position update based on of
for imgindex=3:22
display(imgindex);
a2=sprintf(filename5,imgindex);
b2=sprintf(filename6,imgindex);
fid=fopen(a2,'r');
[ofx,count]=fscanf(fid,'%f',[200,200]);
ofx=ofx';
fclose(fid);
fid=fopen(b2,'r');
[ofy,count]=fscanf(fid,'%f',[200,200]);
ofy=ofy';
fclose(fid);
ofx_update(imgindex-2)=ofx(row,col);
ofy_update(imgindex-2)=ofy(row,col);
row=row+ofy_update(imgindex-2)+icy(imgindex);
col=col+icx(imgindex);
row=round(row);
col=round(col);

ofx_kal(imgindex-2)=ofx_update(imgindex-2);
ofy_kal(imgindex-2)=ofy_update(imgindex-2);
end
%% kalman filter data prepare part finished
%% kalman filter main part
%ZX,ZY are the testing data
%SysX,SysY are the optimized state
%PX,PY are the optimized state covariance
%eSysX,eSysY are the estimated state
%ePX,ePY are estimated state covariance
%KgX,KgY are the kalman gain
filename7='ofx_kal.txt';
filename8='ofy_kal.txt';
ZX=ofx_kal;
ZY=ofy_kal;
SysX_final(1:20)=0;
SysY_final(1:20)=0;
PX(1)=1;
PY(1)=1;
SysX_final(1)=-1;
SysY_final(1)=-1;
%for index_outside=2:11
index_outside=2;
SysX(1:20)=-1;
SysY(1:20)=-1;
for index=index_outside:index_outside+8
eSysX(index)=SysX(index-1);
eSysY(index)=SysY(index-1);
ePX(index)=PX(index-1)+1;
ePY(index)=PY(index-1)+1;
KgX(index)=ePX(index)/(ePX(index)+0.05);
KgY(index)=ePY(index)/(ePY(index)+0.05);
PX(index)=(1-KgX(index))*ePX(index);
PY(index)=(1-KgY(index))*ePY(index);
SysX(index)=eSysX(index)+KgX(index)*(ZX(index)-eSysX(index));
SysY(index)=eSysY(index)+KgY(index)*(ZY(index)-eSysY(index));
SysX_final(index)=SysX(index);
SysY_final(index)=SysY(index);
%end
fid=fopen(filename7);
dlmwrite(filename7,SysX_final,'delimiter',' ','newline','PC');
%fclose(fid);
fid=fopen(filename8);
dlmwrite(filename8,SysY_final,'delimiter',' ','newline','PC');
%fclose(fid);
fid=fopen(filename9);
dlmwrite(filename9,ZX,'delimiter',' ','newline','PC');
fid=fopen(filename10);
dlmwrite(filename10,ZY,'delimiter',' ','newline','PC');
fclose('all');

Fig.5 System simulation on ModelSim-Altera.

The advantage of parallel processing in FPGA leads to a
substantial increase in performance and accuracy in
processing, extraction of information than in the simulation in
Matlab as shown in fig.6 and simulation in fig.7.

708

Fig.6 Pixel Kalman Filter Calculation

Fig.7 Behavioral simulation of the Kalman Filter

III. RESULTS

The above hardware design was implemented on an Altera
Quartus II board and ModelSim, shown in fig.8and was able
to operation time is about 60 clock cycle, which about 0.6us at
100MHz clock pulse, so the operation speed can be up to
1.5MHz. The whole design requires 4168 ALUTs and 241
registers- occupancy of resources is about 49% as in Tab.1.

Fig.8 The Altera DE2 board

TABLE I
Sr. No. Information Count %use
1 Noofslice 2145of32640 7%
2 Slice LUTs 3626of32640 14%
3 SliceLUTs

Used as logic
3626of32640 14%

4 LUTFlip-
Fl.pair used

4168

5

LUT Flip-
Fl. pairs with

2023of4168 49%

6 LUT Flip-
Flop pair

542of4168 17%

7 Fully used
FFpairs

1603of4168 41%

8 BondedIOBs 82 of 480 21%
9 DSP48Es 16 of 288 7%

The output and parameters are alignet such that one

memory controller can handle reads and writes to input
buffers. Hardware resources for the parameter calculation
approximately 1664 Logic Cells. When we compare the
outputs obtained from Matlab and FPGA, we find the outputs
obtained using the AlteraDE2CycloneIIFPGAkitare

computationally efficient. The pixel values are scaled and the
outputs are comparable to the ones obtained using Matlab.
Comparison between Optical flow [6] and Kalman Filter
estimation shows the tracking result in Tab2.

TABLE II
Frame Number Optical Flow Kalman Filter
Frame1 -0.49883 -1
Frame2 -0.48995 -0.50219
Frame3 -0.48615 -0.54989
Frame4 -0.55982 -0.55775
Frame5 -0.65988 -0.65408
Frame6 -0.71012 -0.70244
Frame7 -0.42995 -0.43128
Frame8 -0.55981 -0.50974
Frame9 -0.45776 -0.46228
Frame10 -0.64996 -0.64356

One is from Optical Flow data and another one comes from

the Kalman Filter estimation. In the first two frames, the
Kalman Filter needs a period to converge. After the
convergence, the Kalman Filter can estimate the motion well.

IV. CONCLUSION

Optical flow shows good results to detect and track the
local motion, but suffers from some problems. One problem
is when there exists both local and global motion. If these two
kinds of motion exist at the same time, we should use some
method to remove the global motion first and then run
optical flow to detect the remaining motion. We used the
image correlation first to delete the global motion and then
ran the optical flow to get the local motions. We also added
the Kalman Filter to the project to smooth the motion history
and estimate the future trajectory of objects. The threshold
and spatial-temporal filter helped the Kalman Filter deleting
most of the noise efficiently. From the experimental results
we see that this idea could improve tracking results for aerial
video. Errors exist in the tracking process. Some are caused
by the quality of the video, and others may caused by the
algorithms limitations.

REFERENCES

[1] Maybeck, Peter S. Stochastic Models Estimation and Control,
Vol I. Academic Press, Inc., Orlando, 32887.

[2] Hagen, E. Navigation by Optical Flow, In Proc. of IAPR
Intern.Conf.-Patt. Recgn. Vol.1, 1992, pp. 700–703.

[3] Lazarov, A. D. Spatial correlation algorithm for ISAR image
Reconstruction- 2000 IEEE - Rad.Conf. Virginia, USA, 7-12 P.

[4] Brown and P. Y. C. Hwang, Introduction to Random Signals
and Applied Kalman Filtering, 3 rd Ed.2006.

[5] Pellerin D.and S. Thibault. Practical FPGA programming in
C.Prentice Hall PTR, ISBN: 0-13-154318-0.ANN

[6] J. Diaz, E. Ros,S. Mota,Fpgabased real-time optical flow
system, IEEE Transactions on, vol. 16, pp.274-279, Feb. 2006.

