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Abstract—Created an algorithm for modal control of dual-mass
electromechanical system which is composed of a DC motor,
power electronic converter voltage and working machine. The
created algorithm is based on discrete mathematical system
description in state-space. It is provide fast and smooth
acceleration of the working machine to set speed and current in
the motor acceleration remains less than 2Ilnom.
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I. INTRODUCTION

The structural scheme of dual-mass electromechanical
system consisting of a power converter, a DC motor (at
constant magnetic flux d=const) with moment of inertia J1
and working machine with an equivalent moment of inertia
J2, is shown in Figure 1 [1, 4, 5].

Mathematical description of the structural scheme shown
above can be obtained based on equations of the processes in
the DC motor and dual-mass equations of mechanical part.

In this case, considering DC motors with parallel excitation,
which has catalog data:

v Unom=220 V; Ppom=0.3 kW;
v Npom=1000 tr/min; lyen=2 A;
v r,+r,=16.6 2 - resistance of the armature

Py=1 — number of pairs of poles;
@.102=0.31 Wh;

Nmax=2000 tr/min;

J=J,=0.042 kgm?;

m=38.0 kg.
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The variables introduced in Fig.1 have the following
values:
v R,=20.8828 £,

vV T, = %: 0,0126 s, where

a

L= rU.m
P o @ -

nom nom * " nom

=0,2626 H ;

2pn

v r=0.254; w,,, = ﬁ: 104,7198 rad/sec ;

\

J,=J=0,042kgm’;

J,=0,5J, =0,021kgm? ;

Son " Raloon 1 7020 s ;
,

Fron_ 2,8648 Nm ;

nom

v ¢, =0,5M,,,=1,4324 Nm - coefficient of hardness
to elastic connection;

AN

v cF=

v M =

nom

S

windings; v M,=01M,,, =0,28648 Nm;
v N=3384 - number of active conductors;
! v = =
v' 2a=2 - number of parallel branches; M =0.9M o =2.57832 Nm.
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Fig. 1structural scheme of dual-mass electromechanicalsystem
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electromechanical system is shown in Figure2. It was
simulating on the basis of the structural scheme of Figure 1.
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Fig. 2Transition process of dual-mass electromechanical system
without modal control.

As a result of internal electromotive feedback, when input
voltage is constant (u = const) the output speed is establishe.
With increasing hardness of the elastic connection increases
the frequency of fluctuations and reduces their amplitude.
With increasing moment of inertia of the second mass
fluctuations subside more slowly. When had appeared of
disturbance (in the moment t = 10s) the speed of dual-mass
system is lower.

Il. DISCRETE MATHEMATICAL MODEL OF DUAL-
MASS ELECTROMECHANICAL SYSTEM

The algorithm for modal control is going to synthesize
based on discrete mathematical model of the dual-mass
system in state-space. Therefore, it first is going to made
mathematical description of the continuous system in state-
space.

To be able the algorithm is using for practical purposes,
elements of the state vector is going to chose real physical
values: x, =i, - armature motor current; x, = @, - rotor speed

the motor; x, = M,, - mechanism elastic torque u x, = @, -
speed of the working machine.
X, = TR (k u

n= za

1
) chz)—T—xl;

1)

Based on (1) is obtained mathematical description of
continuous dual-mass system in state-space:

X(t)=Ax(t)+bu(t);
y(t)=c"x(t)+ du(t),

and the individual matrices are the following

()

[-UT, cFIT,R, 0 0
cF/, 0 STARE
A= =
0 Cy, 0 -C;,
|0 0 13, 0
[-79,3651 -6,468451 0 0
_ | 40,52381 0 23,8095 0 |
1o 1,4324 0 -1,4324 |’
| o 0 47,619 0
k,/RT,| [65,8437
0 0
b= = :
0 0
0 0

¢’=[0 0 0 1]; d=0.

Based on the mathematical description of the continuous
system (2) mathematical description is made of discrete dual-
mass system in state-space for a sample time To=0.1s:

X(k +1)=Ax(k)+bu(k);

. ©)
y(K)=c"x(k)+du(k),

and the individual matrices are the following

-0.0160 -0.0331 -0.1530 -0.0016
| 02071 04235 17665 -0.0146 |
7|-0.0576 -0.1063 0.1923 0.1036 |

0.0197 -0.0291 -3.4441 0.1777

0.3526

160168 |

“10.0272 |
8.6667

¢’=[0 0 0 1; d=o0.

I1l. ALGORITHM FOR MODAL CONTROL OF DUAL-
MASS ELECTROMECHANICAL SYSTEM

Algorithm which is presented below was developed based
on algorithm for modal control in [3]. Modal control is
realized by synthesizing the feedback vector k. The vector k is
defined so that the poles of the closed-loop system to moved
in a circle with specified radius 7 known as zone of stability.

Algorithm for modal control of dual-masssystem is shown
in a structural form with the scheme of Figure 3 and is
described step by step below.
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Fig. 3 Algorithm for modal control of dual-mass electromechanical system in a structural form.

Step 1 Introduction of: the matrix A, the vector b, the
vector c, the scalar d and zone of stability 7. Zone of stability
specifies the radius of the circle in which to locate the poles of
the closed system;

Step 2 Check order of the system-n through the length of
the vector b;

Step 3 Determination the eigenvalues of the matrix A

(A, A2, ...y 4n) and  corresponding to them own vectors
qll qu ey qn:

Step 4 Formation the matrix of own vectors Q
Q=[a, a, - a,]sa,=[a G - G.); i=12,..n;

Step 5 Generation of n-dimensional vector &, of random
numbers with normal distribution between 0 and 1

g=[& & &1

Step 6 Determination of vector eigenvalues of the closed
system

n 05| | & H
0.5
n= 77 - | §:2 0.1= /sz ;
n 0.5] |G H,
Step 7 Determination of the vector

0. ;

the elements of the vector d

9=Q'b=[g, g,
Step 8 Calculation of

n

H(ﬂ"_”i)

d=—r— i=1,2,..,n;
gjlqg(if_ﬂj)
d=[d, d, -~ d,]';

Step 9 Defining the vector of feedback

kT:dTQ:[kl k, kn];

Step 10 Determination of the innovation vector addition f
and matrix of the state observer F

f =acker(A,c,w), w=[0 0 O]T :
F=Afc";

Step 11 Estimation the current state vector X(k)

T

K(k+1)=F(K)+bu(k)+fy(K), X(0)=[0 0 - 0]', k=0,1,2,...;
Step 12 Calculation of the integral variable Xjn
Xint (k+1): Xint(k)+wset _wz(k)! k = 0111 2! !
Step 13 Calculation of control voltage
(K
wo=[k, 9| k=0, 12..;
(k)
Step 14 Repeating steps 11, 12 and 13 during the control
process.

IV. MATLAB-IMPLEMENTATION OF ALGORITHM
FOR MoDAL CONTROL

clc,clear

%State Space Modal Control for DC Motor ******ikkik
omega_set=100; stab_zone=0.27; k_int=0.02; Mc=2.57832;
takt_disturb=80; endprocess=120;

%

A=[-0.0297 -0.0544 0.1308 -0.0094;
0.3408 0.6087 -1.7352 0.1446;
0.0493 0.1044 0.5422 -0.1204;
0.1180 0.2891 4.0035 0.6867];

b=[ 0.6496; 2.5117; 0.1632; 0.2463];

c=[ 0; 0; 0; 1]; d=0;

n=length(b);

[Ag,Az]=eig(A");
ERROR(1:n,:)=Aq(:,1:n)."*A-Az(1:n,1:n)*Aq(:,1:n).";
iT abs(max(ERROR))<0.0001

q(1:n,:)=CAq(:,1:n))."; z=diag(Az);
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iT max(abs(z))>stab_zone
mu=(stab_zone-(0.5-randn(1,n))*0.1);
end
p=[a(d:length(q(:,1)),:)*b];
dm(1:length(z))=0;
Pden=1;
Pnum=1;
for i=1:length(z)
for j=1:length(z)
Pnum=Pnum*((z(i)-mug))):;

Pden=Pden*((z(i)-z()));

it i-=j

end
end
DEN=p(i)*Pden;
dm(i)=-(Pnum/DEN) ;
Pden=1;
Pnum=1;
end
k=dm*q;
else
error(“Discrepancy between eigenvalues and own
vectors*®)
end
it abs(imag(k))<0.001
K=real (k);
end
w=zeros(n,1); f=(acker(A",c,w))"; F=A-f*c";
takt=1
x_int(takt)=0; xo(:,takt)=zeros(n,l);
xr(:,takt)=zeros(n,1l); y(takt)=0; disturb=0;
keyl=1;
while keyl==1
takt=takt+1
x_int (takt)=x_int (takt-1)+y point-y(takt-1);
u(takt)=[ki K]*[x_int (takt); xo(:,takt-1)];
xo(:,takt)=F*xo(:,takt-1)+b*u(takt)+f*y(takt-1);
xr(:,takt)=A*xr(:,takt-1)+b*u(takt);
iT takt>takt_disturb
disturb=Mc;
end
y(takt)=c"*xr(:,takt)-disturb
1 (takt)=xr (1, takt);
iT takt>=endprocess
key1=0;
end

Simulation study is done through the above shown
implementations of MATLAB. Results of the study is shown
in Figure 4.
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Fig. 4Results of the simulation study with MATLAB-
implementation.Above-the output speed, below-armature current.
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V. CONCLUSION

The results, shown in Figure 4 were obtained in assigned
speed of working machine ws=100 rad / s; integrating factor
kin=0.02; and poles of the closed system are located in a circle
of radius = stab_zone=0.27. In k=80 (8 th second) appears
disturbance in the form of torque-Mc of the shaft of the
working machine.

If you compare results of Figure 2 and Figure 4 shows that
in the control of the proposed algorithm, acceleration is
smooth and three times faster. There are no fluctuations which
are caused by elastic connections. Inrush current exceeds
nominal only 1.9 times (l;, = 1.91,,m). Integral component in
the law for control eliminated the disturbance and return the
system back to set speed.

From the experiments it became clear that the algorithm is
highly sensitive to the location of the poles of the closed-loop
system (vector p) and the value of the coefficient of
integration ki,.. Here p and k;y are determined experimentally.
Theoretical problem of determining p and ki, is not solved.
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