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Abstract –The paper describes the application of the finite 
value theorem of the Laplace transformin the identification 
procedure of a continuous-time parametric model. The presented 
identification approach involves only a number of integrating 
processes and is suitable for easy automation. Two examples are 
used to demonstrate the merits of the proposed identification 
algorithm. 
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I. INTRODUCTION 

An important step in process control is the identification of 
a "suitable" model of a continuous-time system from real 
observations [1]. What suitable means depends primarily on 
the concrete application one has in mind.Thus, it is necessary 
to select an appropriate level of model complexity depending 
on the purpose of system identification.Moreover, the 
acceptance of models should be guided by "usefulness" rather 
than by "truth".  

Many identification methods discuss the parameter 
estimation problems both of continuous-time and discrete-
time system models.A detailed overview of such methods is 
given in Ljung [2]. Least-squares, step response, and 
frequency response methods are representative as 
deterministic off-line identification approaches. 

The system identification techniques based on the 
continuous-time model were initiated in the middle of the last 
century [3], but, for some time, were overshadowed by the 
overwhelming developments in discrete-time methods. This 
was mainly due to the "go completely digitally" trend that was 
the result of the paralleldevelopment in digital computers. 

This paper studies a deterministic off-line identification 
method ofthe rational transfer function which can be 
performed by using the data of a constant steady-state output 
step response. Such identification methodology, known as 
transient response analysis, is simple to apply and understand, 
and often providesonly information good enough for the 
estimates of the input-output gain, the dominant time 
constants, as well as the time delays. These properties make 
the methods suitable for the first-stage of the analysis to 
prepare for the other experiments in the system identification. 

The paper is organized as follows.Section 2 introduces 
some preliminary facts before a simple identification method 
is presented. The properties of the identification procedure are 

summarized in Section III and illustrated by several 
simulation results.Finally some conclusions of the work are 
presented in Section IV. 

II. THE PARAMETRIC IDENTIFICATION METHOD 

In this section, some assumptions are made for the plant to 
be identified, and an identification approach is considered. 

A. The Plant to be Identified 

A single-input single-output linear dynamical system can be 
described by a time-invariant linear differential equation 
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Assume that is a step function with the amplitude . ( )u t 0U
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the coefficients of the model transfer function  
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can be determined. 
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B. The Algorithm of the Proposed Identification Method 

Note that the method is based on the area determination and 
the graphical interpretation of the first step of the algorithm is 
shown in Fig. 1. According to the final value theoremofthe 
Laplace theorem, we have 
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where 0K  is indicated in Fig. 1. 

It is suitable to define the integral 1( )t  as follows [4] 
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can be calculated as it is indicated in Fig. 1. Than, the final 
value theorem of theLAPLACE transform gives 
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Continuing with the integration, a system of linear equations 
is obtained with a general formula as 
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Table I contains a summary of the identification procedure 
in the case when all jb  parameters except in (3) are equal 

to zero. 
0b
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Fig. 2 presents a simple block-diagram for performing all 
calculations in the described identification procedure. The 
measured data, obtained experimmentally from a real-time 
set-up, can be used inthe MATLAB

®Simulink environment to 
identify unknown system parameters.It is obvious that the 
considered identification approach is very simple and can be 
realized with the minimalcomputational effort. 

 
Fig. 1. Evaluation of the unit step response 
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Fig.2. The schematic diagram of the considered identification procedure 

III. SIMULATION EXAMPLES 

787 

In this paper, the described method will be illustrated by 

Consider the following fourth-order linear system given by 

two examples related to the fourth-order linear objects without 
finite zeros. 

A.  Example 1. 
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In simulation, the input is taken as a step signal with the 

s. 

Fig. 4 visualizes one of the variety of configurations to be 
ob

amplitude equal to 10. The important point is that the duration 
of the simulation should be sufficient to ensure that the input 
signal be able to excite the slowest system mode. The 
estimated parameters for a fourth-order model are shown in 
Fig. 3. It can be seen that after 25 seconds the estimated 

parameters converge to the true value

B.  Example 2. 

taind with the ECP Model 210 Rectilinear Plant by using 
springs of varying stiffness [5]. A drive motor provides 
actuation to the system via the first mass, and position 
measurements ( )ix t , 1,2i   are taken by quadrature encoders. 

The equatio nsidered mass-spring system may ns for the co
be

t

 found using Newton's laws to write force balance equations 
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The parameters of this set-up can be found in the 
literature[5], as follows: 1 1.7 kgm  , 2 1.2kgm  , 

1 2 800 N mk k  , 3 450 Nk m , 2 9 Ns m . The abovec 
motion equation re lts in the transfer function 
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which can be equivalently rewritten in such a way as in (1) 
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It should be noted that all - parameters have low values, 
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and moreover are of different order of magnitude, which is the 
known characteristic of the electro-mechanical systems.  

For the purpose of the fourth-order model param
imation, the algorithm described in the previous section 

was applied. Table II presents the estimated values of the 
parameters obtained at some different conditions of 
experimentation. The results illustrate some of the 
fundamental problems of system identificationrelated to the 
experiment duration and the accuracy of data presentation. 
Thus, the electro-mechanical plant given in Fig. 4 can be 

 
Fig.3. Estimated model parameters in Example 1 

 

Fig.4. The scheme of the electro-mechanical plant 



 

TABLE II 
ESTIMATED PARAMETERS IN EXAMPLE 2 

Working formats in  MATLAB
®Simulink environment   

     format long format short 

 
 

Estimated 
parameters  Measured time                                 Measured time 

20st  t 10s t 20s  

0b̂  0.00058827058647 0.00058827056152 0.0006 

1̂a  0.01058797060125 0.01058754730445 0.0106 

2â  0.00297435128462 0.00297645908868 0.0032 

3â  0.00001124942294 0.00000424347456 -0.0013 

4â  0.00000149999767 0.00001896499007 0.0065 

Efficiency very good poor very poor 

 
 

adequately represented by the model obtained after the 
identification procedure lasting 20 seconds and retaining the 
larger number of decimal places corresponding to the 
MATLAB

® data presentation in long format. 

IV. CONCLUSION 

System identification is a well-established field. However, 
the search for the simple procedures of identification is still a 
special scientific challenge. This paper presents an 
identification algorithm implemented in the MATLAB

®-
Simulink environment based on the well-known final theorem 
of the Laplace transform. The properties of the described 
identification method are illustrated by the simulation results. 

At the present stage, some conclusions can be drawn from 
the above study. The method is more difficult to implement if 
the model to be identified is given in the form of the transfer 
function with the finite zeros. The quality of the estimation 
has not be analyzed in the case of the noise corrupted system 
step responses. 
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