

 595

Approach to Formal Verification of Messaging Service
Capability Server in Mobile Networks

Ivaylo Atanasov1

Abstract – In this paper it is investigated how open access to
messaging function in mobile networks may be deployed. The
focus is on Open Service Access (OSA) interfaces for user
interaction and Customized Application for Mobile network
Enhanced Logic (CAMEL) applied to Short Message Service.
Service Capability Server (SCS) makes translation between OSA
interface methods and CAMEL Application Part (CAP)
protocol. The formalism of labelled transition systems and the
behavioural equivalence concept are used to verify the SCS
functional behaviour.

Keywords – CAMEL, Open Service Access, Labelled
Transition Systems, Bisimulation.

I. INTRODUCTION

Open Service Architecture (OSA) allows third party access
to communication functions in a network neutral way. Using
OSA Application Programming Interfaces (API), application
developers can create attractive applications without specific
knowledge about underlying network technology and control
protocols. Interoperability between OSA applications and
specific network functions requires special type of application
server called OSA Service Capability Server (SCS). The OSA
SCS is responsible for translation of OSA interface method
invocations into control protocol messages and vice versa.

The research focus is on OSAinterfaces for user interaction
and Customized Application for Mobile network Enhanced
Logic (CAMEL) applied to Short Message Service (SMS).
The OSA User Interaction (UI) service provides API for call-
related and call-unrelated user interactions [1]. The UI
supports sending information or sending and collecting
information. The mappings of OSA UI API onto CAMEL
Application Part (CAP) protocol in the context ofSMS is
defined in [2]. Some implementation aspects of CAMEL
messaging service and OSA messaging service are discussed
in [3,4] but no interworking issues are considered. In order to
make interface to protocol translation, the OSA SCS needs to
maintain two mutually synchronized state machines
representing the application view on UI and protocol states. In
the paper, we suggest a formal approach to verification of
OSA SCS using the formalism of Labelled Transition Systems
and the concept of bisimulation. The approach may be used
for automatic generation of test cases during the OSA SCS
functional verification [6].

The paper is organized as follows. In Section II, we discuss
aspects of OSA deployment in a mobile network with

CAMEL architecture.The formalism for Labelled Transition
Systems is briefly introduced in Section III. A formal
description of OSA SCS behavior is given in Section IV.
Section V presentsformal descriptions of CAMEL state
models for SMS events. Finally, the behavioral equivalence of
state machines of OSA UI model and CAMEL SMS modelsis
proved in Section VI.

II. FUNCTIONAL ARCHITECTURE FOR OPEN

ACCESS TO MESSAGING FUNCTIONS

A functional architecture for deployment of OSA UI
interfaces in CAMEL network is presented in Fig.1. Toward
the network, the OSA SCS performs functions of CAMEL
gsmSCF (Service Control Function) which provides CAMEL
service logic. The network node - Mobile services Switching
Center (MSC) or Serving GPRS Support Node (SGSN),
provides functions of gsmSSF (Service Switching Function)
which is responsible for switching between SMS processing
and service logic in gsmSCF. The SMS-Center (SMSC) is a
node where short messages are stored before delivering.

In [1], it is defined a model that represents the application

view of user interactions. In [5], two CAMEL models for
SMS events are defined, one for mobile originating short
messages and another for mobile terminating short messages.
The behavior of OSA SCS regarding user interactions for
short messaging needs to correspond to the specified models
of both OSA application and CAMEL service logic. The
formal specification of the models allows proving the
behavioral equivalence, and hence the interoperability of OSA
user interaction control and CAMEL service control.

III. LABELLED TRANSITION SYSTEMS AND

BEHAVIOURAL EQUIVALENCE

To prove formally behavioral equivalence between state
machines, the notion of Labelled Transition Systems is used
[6].

Definition 1: A Labelled Transition System (LTS) is a
quadruple (S, Аct, →, s0), where S is countable set of states,

1The author is with the Faculty of Telecommunications, Technical
University of Sofia, Kliment Ohridski 8, 1000 Sofia, Bulgaria, E-
mails: iia@tu-sofia.bg.

Fig. 1. OSA UI interface deployment in CAMEL network

3rd party
Application server

OSA API

MSC/SGSN
gsmSSF

CAP

OSA SCS/ gsmSCF

Application view on user

interaction

CAMEL state model for
SMS events

SMSC

 596

Actis a countable set of elementary actions, →⊆S × Act × S is
a set of transitions, and s0 ∈S is the set of initial states.

We will use the following notations:

- s
а
→ s’ stands for the transition (s, a, s’);

- s
а
→ means that ∃ s’: s

а
→ s’;

- s
μ

⇒ sn , where μ = а1, а2, ..., аn : ∃s1, s2, …, sn, such

that s
1а

→ s1 ...
nа

→ sn;

- s
μ
⇒ means that ∃s’, such as s

μ

⇒ s’;

- ⇒
μ̂ means ⇒ if μ ≡ τ or

μ

⇒otherwise,

where τ is one or more internal actions. More detailed
notation description can be found in [6].

The concept of bisimulation [7] is used to prove that two
LTSs expose equivalent behavior. The strong bisimulation
possesses strong conditions for equivalence which are not
always required. For example, there may be internal activities
that are not observable. The weak bisimulation ignores the
internal transitions.

Definition 2: [7] Two labelled transition systems T = (S,

Act, →, s0) and T’ = (S’, Act, →’, s0’) are weakly bisimilar if
there is a binary relation U⊆ S×S’ such that if s1U t1: s1 ⊆S
and t1 ⊆S’ then ∀a ∈Act:

- s1⇒
a s2 implies ∃ t2: t1⇒′

â t2 and s2U t2;

- t1⇒′
a t2 implies ∃ s2: s1⇒

â s2 and s2U t2.

IV. FORMAL DESCRIPTION OF OSA USER

INTERACTION MODEL

The application view on UI object is defined in [1]. The
behavior of the UI object is described by finite state machine.
In Null state, the UI object does not exist. The UI object is
created when the createUI()method is invoked or a network
event is reported by reportEventNotification()method. In
Active state, the UI object is available for requet messages
which have to be sent to the network. Both
sendInfoAndCollectReq()and sendInfoReq()methods have a
parameter indicating whether it is a final request and the UI
object has to be released after the information has been
presented to the user. In Active state, when a fault is detected
on the user interaction, an error is reported on all outstanding
requests. A transition to Release Pendingstate is made when
the application has indicated that after a certain message no
further messages need to be sent to the end-user. There might
be, however, still a number of messages that are not yet
completed. After the last message is sent or when the last user
interaction has been obtained, the UI object is destroyed. In
Finished state, the user interaction has ended. The application
can only release the UI object. A simplified state transition
diagram for UI object is shown in Fig.2.

By ТAppUI = (SAppUI, АctAppUIH,→AppUI, s0) we denote a LTS

representing the OSA application view on UI object where:
- SAppUI = { Null, Active, ReleasePending, Finished };
- ActAppUI = { createUI, reportEventNotification, sendInfoReq,

sendInfoAndCollectReq, sendInfoRes, sendInfoErr,
sendInfoAndCollectRes, sendInfoAndCollectRes,
sendInfoAndCollectErr, sendInfoAndCollectErr,
userInteractionAborted, release };

 - →AppUI = { Null createUI Active,
Null reportEventNotification Active,
Active sendInfoReq Active,
Active sendInfoRes Active,
Active sendInfoAndCollectReq Active,
Active sendInfoAndCollectRes Active,
Active sendInfoErr Active,
Active sendInfoAndCollectErr Active,
Active release Null,
Active sendInfoReq ReleasePending,
Active sendInfoRes ReleasePending ,
ReleasePending sendInfoErr Active,
ReleasePending sendInfoErr ReleasePending,
ReleasePending sendInfoRes Finished,
ReleasePending userInteractionAborted Finished,
ReleasePending release Null,
Finished release Null,
Active sendInfoAndCollectReq ReleasePending,
ReleasePending sendInfoAndCollectErr Active,
ReleasePending sendInfoAndCollectRes ReleasePending,
ReleasePending sendInfoAndCollectErr ReleasePending,
ReleasePending sendInfoAndCollectRes Finished,
Active sendInfoReq Finished,
Active userInteractionAborted Finished };

 - s0’ = { Null }.

V. FORMAL DESCRIPTION OF CAMEL STATE

MODELS FOR SMS EVENTS

CAMEL defines state models for SMS events which
provide the possibility of triggering services as a result of
messaging events [5]. Service logic may brake into sending a
short message. CAMEL doesn’t inspect the content of any
message and it doesn’t trigger services on that basis; the only
events CAMEL triggers a service are the ones
regardingsignaling conditions. CAMEL can recognize the
origin and destination addresses of the message and can use
this as criteria to start a service.

reportEventNotification,
createUI

Active

Release
Pending

Finished

sendInfoReq[final],
sendInfoAndCollectReq[final] and

responses outstanding,
sendInfoRes[not final]

sendInfoReq,sendInfoAnd
CollectReq

sendInfoReq[final] and no
responses outstanding,
userInteractionAborted

release

release

release

sendInfoRes,sendInfoAndCollectRes,
sendInfoErr,sendInfoAndCollectErr

sendInfoErr[final],
sendInfoAndCollectErr[final]

sendInfoRes[final],
sendInfoAndCollectRes[final],

userInteractionAborted
and no responses outstanding

sendInfoAndCollectRes[not final],
sendInfoAndCollectErr[not final],sendInfoErr[not final]

Fig. 2. OSA application view on the UI object

 597

The Mobile Originating(MO) SMS state model is used to
describe the actions in MSC and SGSN during Mobile
Originating SMS and it is shown in Fig.3. The model is
started when the gsmSSF sends to the gsmSCF and
InitialDPSMS message.

Entry events for SMSNull&Start&Authorize state are about

previous MO SMS transfer to the SMSC completed or
exception event. The detection point SMS_Collected_Info
indicates that the subscription information is analysed and a
MO short message is received. The CAMEL control flow
between gsmSCF and gsmSSF corresponding to this detection
point is shown in Fig.4.

In SMSAnalyze&Routing state, information being analysed

and/or translated to determine routing address of the SMSC
and the short message is sent to the SMSC. The
O_SMS_Submitteddetection point indicates that the short
message is successfully submitted to the SMSC and it is
reported by gsmSSF to gsmSCF sending anEventReportSMS
message. The O_SMS_Failure detection point is armed when
a failure has occurred in the SMS or command submission.
The failure may have occurred internally in the MSC or
SGSN or may have occurred externally, e.g. in the SMSC.
Inthis case, the gsmSSF reports an error to the gsmSCF
sending EventReportSMS message. An exception situation
occurs when the gsmSSF reports DialogueAbort or
DialogueError to the gsmSCF.

We decompose the SMSNull&Start&Authorize state into two
states: SMSNullO and Start&AuthorizeO to distinguish between
different short messages in user interactions. Using the
notations of LTS, we describe formally the CAMEL state
model for MOSMS events by ТOSMS = (SOSMS, АctOSMS,
→OSMS, s0’) where

- SOSMS= {SMSNullO, Start&AuthorizeO, SMSAnalyze&Routing };
- ActOSMS = { InitialDPSMSO, RequestReportSMSEvent, ConnectSMS,

FurnishChargingInfoSMS, ContinueSMS, EventReportSMS,
Release, EventReportSMS,DialogueAbort, DialogueError};
- →OSMS = { SMSNullO InitialDPSMSOStart&AuthorizeO,
Start&AuthorizeORequestReportSMSEvent SMSAnalyze&Routing,
SMSAnalyze&Routing

FurnishChargingInfoSMSSMSAnalyze&Routing,
SMSAnalyze&Routing ConnectSMSSMSAnalyze&Routing,
SMSAnalyze&Routing ContinueSMSSMSAnalyze&Routing,

SMSAnalyze&Routing EventReportSMSSMSNullO,
SMSAnalyze&Routing EventReportSMSStart&AuthorizeO,
SMSAnalyze&Routing EventReportSMSSMSNullO,
SMSAnalyze&Routing ReleaseSMSNullO,
SMSAnalyze&Routing DialogueAbortSMSNullO,
SMSAnalyze&Routing DialogueErrorSMSNullO};
 - s0’ = {SMSNullO}.

The Mobile Terminating(MT) SMS state model is used to
describe the actions in MSC and SGSN during Mobile
Terminating SMS, and it is shown in Fig.5.

The SMSNull&Start&AuthorizeT state is entered when a

short message is received in MSC from SMS-gateway MSC
or previous MT SMS transfer completed or an exception event
occurs. The SMS_Delivery_Request detection point indicates
that the a mobile terminating SMS is received and it
corresponds to the EventReportSMS message.The
T_SMS_Delivereddetection point indicates that the short
message has been successfully delivered which corresponds to
theEventReportSMS message. The T_SMS_Failuredetection
point indicates that the short message has failed which is
reported byEventReportSMS message.

We decompose the SMSNull&Start&Authorize state into two
states: SMSNullT and Start&AuthorizeT to distinguish between
different short messages in user interaction.Using the
notations of LTS, we describe formally the CAMEL state
model for MTSMS events by ТTSMS = (STSMS, АctTSMS,
→TSMS, s0’’) where

- STSMS = {SMSNullT, Null&Start&AuthorizeT, SMSDelivery};
- ActTSMS = { InitialDPSMST, Release, EventReportSMS,

EventReportSMS, EventReportSMS, DialogueAbort,
DialogueError };

- →TSMS = { SMSNullT InitialDPSMSTStart&AuthorizeT,
Start&AuthorizeTEventReportSMS SMSDelivery,
SMSDelivery EventReportSMSSMSNullT,
SMSDelivery EventReportSMSStart&AuthorizeT,
SMSDelivery EventReportSMSSMSNullT,
SMSDelivery ReleaseSMSNullT,
SMSDeliveryDialogueAbortSMSNullT,
SMSDeliveryDialogueErrorSMSNullT};

 - s0’’ = { SMSNullT }.

VI. BEHAVIOURAL EQUIVALENCE BETWEEN STATE

MACHINES IN OSA AND CAMEL

To prove the interoperability between user interaction
model in OSA and CAMEL state machines for SMS events
we have to prove that the state machine representing the OSA
user interactions and the CAMEL state machines for SMS
events expose equivalent behavior. The behavioral
equivalence is proved using the concept of weak bisimilarity.

T_SMS_Exception

SMS_Null&Start&Authorize

SMS_Delivery
1

1

SMS_Delivery_Request

T_SMS_delivered
2

T_SMS_Failure
3

SMS_Exception

4

Fig. 5.CAMEL state model for MT SMS events

gsmSCF

RequestReportSMSEvent()

gsmSSF

FurnishChargingInfoSMS()

ConnectSMS()
ContinueSMS()

Fig. 4.CAP message flow on sending a short message

O_SMS_Exception

SMS_Null&Start&Authorize

SMS_Analyze & Routing
1

1

O_SMS_Collected_Info

O_SMS_submitted
2

O_SMS_Failure
3

SMS Exception

4

Fig. 3.CAMEL state model for MO SMS events

 598

Proposition 1: The labelled transition systems ТAppUI, ТOSMS
and ТTSMS are weakly bisimilar.

Proof 1: To prove the bisimulation relation between
labelled transition systems, it has to be proved that there is a
bisimulation relation between their states. With U it is denoted
a relation between the states of ТAppUI, ТOSMSand ТTSMS where
U={(Null, SMSNullO, SMSNullT),(Active, Start&AuthorizeO,
Start&AuthorizeT)}. Table 1 presents the bisimulation relation
between the states of of ТAppUI, ТOSMSand ТTSMS which satisfies
Definition 2.In [2], a mapping between the OSA User
Interaction interface methods and CAP messages in the
context of SMS is defined. We use this mapping to
showaction’s similarity. Based on the bisimulation relation
between the states of ТAppUI, ТOSMSand ТTSMS it can be stated
that the state machines expose equivalent behavior.

As an example,an application that uses OSA UI interfaces
creates UI object and requests a message to be sent to the user,
which starts the CAMEL state model for MO SMS events.
Whent the SMS is submitted in the CAMEL network, the
application is informed about the result of requested
operation.

VII. CONCLUSION

In this paper an approach to formal description of OSA user
interaction and CAMEL models for SMS events is suggested.
The concept of bisimulation is used to prove the behavioral
equivalence.

The approach is useful in testing the conformance of a
black-box implementation of OSA SCS with respect to a
specification, in the context of reactive systems.

ACKNOWLEDGEMENT

The research is funded by the Project DO-02-135/2008,
funded Bulgarian Ministry of Education, Youth and Science.

REFERENCES

[1] 3GPP TS 29.198-5 “Open Service Access (OSA); Application
Programming Interface (API); Part 5: User Interaction Service
Capability Feature (SCF)”, Release 9, v9.0.0, 2009.

[2] 3GPP TR 29.998-05-5 “Open Service Access; Application
Programming Interface (API) Mapping for OSA: Part 5: User
Interaction Service Mapping; Subpart 4: API to SMS
Mapping”, Release 9, v9.0.0,2009.

[3] T. Magedanz, M. Sher, “IT-based Open Service Delivery
Platforms for Mobile Networks From CAMEL to the IP
Multimedia System”, in Handbook of Mobile Middleware,
Auerbach Publishers, 2006.

[4] M. Wegdam, D. Plas, and M. Unmehopa, Validation of the
Open Service Access API for UMTS Application Provisioning
Proc. of PROMS 2001, LNCS 2213, pp. 210-221, 2001

[5] 3GPP TS 23.078, “Customized Applications for Mobile
network Enhanced Logic (CAMEL) Phase 4; Stage 2”, v10.0.0,
2010.

[6] T. J´eron, Symbolic “Model-based Test Selection”,Electronic
Notes in Theoretical Computer Science, 240, Elsevier, 2009,
pp.167–184.

[7] X. Chena, R. Nicola, “Algebraic characterizations of trace and
decorated trace equivalences over tree-like structures”,
Theoretical Computer Science, 2001, pp. 337–361.

.

Table 1.Bisimulation Relation between OSA User Interaction states and states of CAMEL models for SMS events

Transitions in ТAppUI Transitions in ТOSMS Transitions in ТTSMS
Null createUI Active
Null reportEventNotification Active

SMSNullO InitialDPSMSO Start&AuthorizeO SMSNullT InitialDPSMST
Start&AuthorizeT

Active sendInfoReq Active,
Active sendInfoRes Active,
Active sendInfoAndCollectReq Active,
Active sendInfoAndCollectRes Active,
Active sendInfoReq ReleasePending,
Active sendInfoRes ReleasePending ReleasePending

sendInfoErr ReleasePending,
Active sendInfoAndCollectReq ReleasePending,
ReleasePending sendInfoAndCollectRes ReleasePending,
ReleasePending sendInfoAndCollectErr Active

Start&AuthorizeO RequestReportSMSEvent
SMSAnalyze&Routing,

SMSAnalyze&Routing
FurnishChargingInfoSMSSMSAnalyze&Routing,

SMSAnalyze&Routing ConnectSMSSMSAnalyze&Routing,
SMSAnalyze&Routing ContinueSMSSMSAnalyze&Routing,
SMSAnalyze&Routing EventReportSMSSMStart&AuthorizeO

Start&AuthorizeT EventReportSMS
SMSDelivery,

SMSDelivery
EventReportSMSStart&Authoriz
eT

Active release Null,
Active sendInfoReq Finished,
ReleasePending sendInfoRes Finished,
Finished release Null

Start&AuthorizeO RequestReportSMSEvent
SMSAnalyze&Routing,

SMSAnalyze&Routing
FurnishChargingInfoSMSSMSAnalyze&Routing,

SMSAnalyze&Routing ConnectSMSSMSAnalyze&Routing,
SMSAnalyze&Routing ContinueSMSSMSAnalyze&Routing,
SMSAnalyze&Routing EventReportSMSSMSNullO

Start&AuthorizeT EventReportSMS
SMSDelivery,

SMSDelivery
EventReportSMSSMSNullT

Active sendInfoErr Active,
Active sendInfoAndCollectErr Active,
ReleasePending sendInfoAndCollectErr ReleasePending,
ReleasePending sendInfoAndCollectRes Finished,
ReleasePending userInteractionAborted Finished,
ReleasePending release Null,
Active release Null,
ReleasePending sendInfoErr Active,
ReleasePending userInteractionAborted Finished,
ReleasePending release Null,
Active userInteractionAborted Finished,
Finished release Null

Start&AuthorizeO RequestReportSMSEvent
SMSAnalyze&Routing,

SMSAnalyze&Routing
FurnishChargingInfoSMSSMSAnalyze&Routing,

SMSAnalyze&Routing ConnectSMSSMSAnalyze&Routing,
SMSAnalyze&Routing ContinueSMSSMSAnalyze&Routing,
SMSAnalyze&Routing EventReportSMSSMSNullO,
SMSAnalyze&Routing ReleaseSMSNullO,
SMSAnalyze&Routing DialogueAbortSMSNullO,
SMSAnalyze&Routing DialogueErrorSMSNullO

Start&AuthorizeT EventReportSMS
SMSDelivery,

SMSDelivery
EventReportSMSSMSNullT,

SMSDelivery ReleaseSMSNullT,
SMSDelivery

DialogueAbortSMSNullT,
SMSDelivery

DialogueErrorSMSNullT

