
 

Efficient Implementation of Hashing in BDD Package 
Miloš M. Radmanović1 

Abstract – The efficient manipulation of Boolean functions is 
an important component of CAD tasks. Binary Decision Diagram 
(BDD) packages have always been sensitive to hash design. This 
paper describes the use of various hash keys in implementation 
of basic BDD algorithms. The various hash key strategies have 
been implemented within a BDD package. In this paper, I 
experimentally performed a detailed analysis of hashing in BDD 
package using BDD algorithms computation and direct 
performance monitoring. The ultimate goal is to exceed the 
computation performance for various BDD algorithms of BDD 
packages. 
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I. INTRODUCTION 

Binary Decision Diagrams (BDDs) have become the 
dominant data structure for representing Boolean functions in 
computer-aided-design (CAD)applications [1]. They are 
widely used in various areas of CAD: logic synthesis, testing, 
simulation, design and simulation verification [2]. [3], [4].  

In practice, the memory required by large BDDs is typically 
the limiting factor for CAD tools. In same cases, especially 
with various BDD algorithms, run time is also a limiting 
factor. Therefore, considerable research has been intended for 
more efficient BDD algorithms implementation [4], [5], [6], 
[7], [8]. 

Various BDD algorithms are usually built on the top of a 
BDD package. Many BDD package implementations have 
been built in a variety of programming languages (C, C++, 
Lisp, Java) [9], [10], [11], [12]. The most of BDD packages 
are freely available in public domains (on the Web). The 
packages CAL (UC Berkeley, USA), CMU (CMU/ATT, 
USA), and CUDD (Boulder, CO, USA)are famous.The 
packages IBM (IBM Watson, USA), Tiger (Bull/DEC/Xorix, 
USA) and TUD (Darmstadt, Germany) are popular [13]. The 
choice of the BDD package might be guided by the following 
aspects: functionality, software interface, robustness, 
reliability, portability, support and performance. Naturally, 
performance is of concern [14], [15], [16], [17], [18], [19]. 
But, from performance comparative studies, BDD packages 
behave similarly as long as they are not put to theextreme 
[13]. They are many parameters that influence the run-time of 
the BDD package, for example: programming language, 
software and hardware platform, BDD node structure, type of 
garbage collection, unique and operation hash table size, and 
hash keystrategiesof tables [1], [20], [21]. 

The concept of hash miss complexity of the BDD package 
has been introduced by paper [21]. It also has been shown that 
run-time of BDD algorithms depends on BDD node and 

operations hashing strategies of the BDD package.  
This paper describes the use of various hash keys strategies 

in implementation of a BDD package and their influence on 
the run-time of the basic BDD algorithms on the top of a BDD 
package. The various hash key strategies have been 
implemented within a BDD package.I build a simple software 
tool for evaluating algorithms depending on hash key of the 
BDD package. Using this software tool, I experimentally 
performed a detailed analysis of hashing in BDD package. 
The analysis of hashing usesbasic BDD algorithms 
computation and direct performance monitoring of the BDD 
package.    

This paper is organized as follows: Section 2 shortly 
introduces the BDD representation of Boolean 
function.Section 3 describes the BDD package technique 
includingbasic BDD algorithms. Section 4presents the hash 
key strategies of the BDD packages. Section 5shows 
experimental analysis of hashing in BDD package and gives 
some examples of using various hash keys. Some concluding 
remarks end the paper. 

II. BINARY DECISION DIAGRAM 

The Binary Decision Diagram (BDD) is a graphic 
representation of the Shannon’s expansion of a Boolean 
function. The concept of BDD was first proposed by Lee in 
1959 [22]. It has been developed into a useful data structure 
by Akers [23] and later by Bryant [2], who introduced a 
concept of reducedordered BDD (ROBDD), and a set of 
efficientoperators for their manipulation. 

The BDD is directed acyclic graph that contain non-
terminal nodes, two terminal nodes, and edges. Non-terminal 
nodes are labeled with variables xi and have two outgoing 
edges. Outgoing edges are labeled ‘0’ and ‘1’ values of 
variable xi. Terminal nodes contain values ‘0’ and ‘1’. The 
truth table entry of Boolean function labels edges from the 
root node to the corresponding terminal node. An example of 
the BDD representation for the function 

321321 ),,( xxxxxxf   is shown in Figure 1. 

The strength of BDDs is that they can represent Boolean 
function data with high level of redundancy in a compact 
form, as long as the data is encoded in such way that the 
redundancy is exposed.  

It is well known that the size of the BDD for a given 
Boolean function depends on the variable order chosen for the 
function.  

Other variants of BDD have been developed to address 
some of the problems with BDDs. Boolean expression 
diagrams (BEDs) are a generalization of BDDs that can 
represent any Boolean circuit in linear space.Zero-suppressed 
binary decision diagrams (ZDDs) are similar to BDDs but use 
a different reduction rule. ZDDs are generally more efficient 
for representing sparse sets. Binary moment diagrams 
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(BMDs) are a generalization of BDDs to linear functions over 
other domains than Booleans, such as integers or real numbers 
[24]. 

 

Fig. 1.  BDD for the function 31 2 3 1 2( , , )f x x x x x x  . 

III. BDD PACKAGE TECHNIQUE 

In this section I describedthree data structures that are 
fundamental to most BDD packages.  

The main principles of BDD package implementation are 
[2], [3], [13]: 
 BDD nodes are data structures that contain a variable 

identifier, “1” and “0” children pointers and “next” pointer 
that links nodes together belonging to the same collision 
chain in the unique table. 

 BDD nodes are kept in a unique table.  
 BDD operations are sped up by using an operation table.  
 The order of variables may be changed to reduce the total 

number of nodes.  
 Recycling of nodes is easily implemented by keeping a 

reference count for each node. 
 BDD packages use breadth-first traversal of the directed 

acyclic graphs.  
It is obvious what needs to be stored for each node in a 

BDD package data structure: the variable field that labels the 
node and two edges field to point children nodes. There 
should obviously also be a field to identifier non terminal 
nodes from terminals. BDD traversal uses a “visited” 
field.Garbage collection might use a reference counter 
field.Chaining of nodes in a hash table needs a “next” field. 
The decisions made in defining the basic node data structure 
have an immediate impact on several related aspects. All this 
data requires certain memory space and needs to be packed 
into a node structure or object [14].  

The unique table maps a triple of (v, G, H) of BDD node, 
where v is the variable identifier, G is the node connected to 
the "1" edge, and H is the node connected to the "0" edge. 
Each node in the BDD has an entry in the unique table. Before 
a new node is added to the BDD, a lookup in the unique table 
determines if the node for that function already exists [3], 
[14].  

The If-Then-Else or ITE operator forms the core of the 
BDD package. ITE is a Boolean function defined for inputs F, 
G and Hwhich computes: “IfF Then G Else H”. ITE 
operations can be used to implement all two-variable Boolean 
operations.The operation table records results of operations on 
BDDs. Typically it stores the fact that R = op(F,G,H), i.e., the 

BDD Ris the result of the operation op applied to three BDD 
arguments F, G, and H, in a operation table [3], [14]. 

Garbage collection invalidates entries that refer to dead 
nodes. Most BDD packages use a reference counting garbage 
collector.  

Originally designed to support the standard operations on 
Boolean functions, BDD packages have grow to build in 
various algorithms. Basic BDD algorithms are based on a 
recursive formulation that leads to a depth-first traversal of the 
directed acyclic graphs representing the BDD. The depth-first 
traversal visits the nodes of the BDD on a path-by-path basis. 
The large in-degree of a typical BDD node makes it is 
impossible to assign contiguous memory locations for the 
BDD nodes along a path. Therefore, the recursive depth-first 
traversal leads to an extremely disorderly memory access 
pattern [5].  

The most of BDD algorithms are the result ofsome other 
basic BDD algorithms yet to be completed.  A 
comprehensiveset of BDD manipulation algorithms are 
implemented usingthe above techniques. The most common 
BDD algorithms are, for example,BDD 
construction,BDDsaddition,and BDD printing [2], [3], [13]. 

IV. HASH KEY STRATEGIES OF THE BDD 

PACKAGES 

The unique table is usually implemented as a hash table 
[25]. For greater flexibility, open hashing with collision 
chains is normally used. The collision lists can be kept sorted 
[1] to reduce the number of memory accesses required for a 
lookup on average. The unique table might be divided in 
subtables, one for each variable [14].  

The size of the hash table is either a prime number or a 
power of two. For hashed insertion, the hash table is used in a 
two-way associative manner: the hash function calculates an 
index k (hash key) for a node (v, G, H) and the node is found 
either at k hash entry or in the collision list. The hash key 
should obviously be composed of the memory position of the 
node and its successors or by defining a signature for each 
node which consists of the variable associated with that node 
and a pseudo random number [1]. 

It should be noticed that the hash key calculation of the 
unique table can be defined as follows: 

( , , ) ( ( )  ( )) mod  UTH v G H m G op m H hs (1) 
where m(G) and m(H) denote memory addresses of the nodes 
G and H, hs denotes hash table size, and op represents some 
logic or arithmetic operation. 

The operation table is usually implemented as a unique 
table [25]. The hash function calculates an index k (hash key) 
for anoperation (F, G, H) and the operation is found either at k 
hash entry or in the collision list. 

It should be noticed that the hash key calculation of the 
operation table can be defined as follows: 

( , , ) ( ( )  ( )  ( )) mod  OTH F G H m F op m G op m H hs (2) 
where m(F), m(G) and m(H) denote memory addresses of the 
nodes F, G and H, hs denotes hash table size, and symbol op 
represents some logic or arithmetic operation. 
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Experimentally, it is proved that efficient operation for 
symbol op can be + or [1], [8], [9], [13], [14].   

From previous consideration, it is evident that various hash 
key strategies can be defined: 
(1)  ( , , ) ( ( ) + ( )) mod  UTH v G H m G m H hs

( , , ) ( ( ) + ( ) + ( )) mod  OTH F G H m F m G m H hs  

(2)  ( , , ) ( ( ) + ( )) mod  UTH v G H m G m H hs
( , , ) ( ( )  ( )  ( )) mod  OTH F G H m F m G m H hs    

(3)  ( , , ) ( ( )  ( )) mod  UTH v G H m G m H hs 
( , , ) ( ( ) + ( ) + ( )) mod  OTH F G H m F m G m H hs  

(4)  ( , , ) ( ( )  ( )) mod  UTH v G H m G m H hs 
( , , ) ( ( )  ( )  ( )) mod  OTH F G H m F m G m H hs    

V. EXPERIMENTAL RESULTS 

It is interesting to consider proposed hashing strategies that 
could be applied to BDD package and tested on basic BDD 
algorithms.  

Below I give tables of BDD package performanceusing 
different basic BDD algorithms. I performed the testing on a 
PC Pentium IV on 2,66 GHz with 4GB of RAM (MS 
Windows 7). The memory usage for all tests was limited to 2 
GB.The size of unique and operation table was limited to 
65536 entries. The garbage collection was activated if the 
total number of BDD nodes and operations in memory 
became greater than 524288. All benchmarks were used in the 
Espresso-mv or pla format [31]. 

Table 1, Table 2, and Table 3 gives the complete list of 
experimental results of BDD package time statistics for hash 
key strategies proposed in the previous section tested on BDD 
construction, BDD addition and BDD printing algorithms, 
respectively. 

All times in all tables are given in seconds. It should be 
noticed that hash key strategies in previous section and in 
headers of all tables have same denotation with symbols (1), 
(2), (3), and (4). Last four columnsfor each table presents 
comparable time performance of BDD package hash key 
strategies. 

There are 15 of 19 benchmarks in table 1 for which 
algorithm has minimum computation time for strategy (4). 
According to that fact, the BDD construction algorithm is in 
most cases efficient for strategy (4). 

There are 14 of 19 benchmarks in table 2for which 
algorithm hasminimum computationtime for strategy (1). 
According to that fact, the BDD addition algorithm is in most 
cases efficient for strategy (1).  

There are only 17 of 19 benchmarks in table 3for which 
algorithm has minimum computationtime for strategy (2). 
According to that fact, the BDD printing algorithm is in most 
cases efficient for strategy (2).  

For comparison, the hash key strategy (3) was least 
efficient for all BDD basic algorithms. 

This BDD basic algorithms dependency of proposed hash 
key strategies is a major advantage of this paper.  

 

TABLE I 
BDD PACKAGE TIME STATISTIC FOR VARIOUS HASH KEY 

STRATEGIES TESTED ON BDD CONSTRUCTION ALGORITHM 

algorithm performance  [s] Fun. 
name 

inp/out/cubes 
(1) (2) (3) (4) 

alu4 14 / 8 / 1028 0.20 0.15 0.18 0.15 
apex1 45 / 45 / 206 5.78 5.18 5.04 4.80 
apex2 39 / 3 / 1035 3.38 3.31 3.32 3.40 
apex4 9/19/438 0.08 0.05 0.04 0.04 
apex5 117/88/1227 0.34 0.30 0.29 0.27 
b12 15/9/431 0.01 0.01 0.01 0.01 
clip 9/5/167 0.01 0.01 0.01 0.01 
con1 7/2/9 0.02 0.01 0.01 0.01 
cordic 23/2/1206 0.08 0.06 0.05 0.03 
cps 24/109/654 0.16 0.15 0.15 0.14 
duke2 22/29/87 0.03 0.03 0.02 0.03 
e64 65/65/65 0.02 0.01 0.01 0.01 
ex4p 128/28/620 0.01 0.01 0.01 0.01 
ex1010 10/10/1024 0.02 0.02 0.02 0.02 
misex2 25/18/29 0.05 0.05 0.05 0.05 
misex3 14/14/1848 0.24 0.20 0.20 0.21 
misex3c 14/14/305 0.05 0.03 0.02 0.04 
table3 14/14/135 0.03 0.02 0.01 0.01 
table5 17/15/158 0.02 0.01 0.01 0.01 

 

TABLE II 
BDD PACKAGE TIME STATISTIC FOR VARIOUS HASH KEY 

STRATEGIES TESTED ON BDD ADDITION ALGORITHM 

algorithm performance  [s] Fun. 
name 

inp/out/cubes  
(1) (2) (3) (4) 

alu4 14 / 8 / 1028 0.40 0.44 0.42 0.45 
apex1 45 / 45 / 206 9.33 9.25 9.53 9.22 
apex2 39 / 3 / 1035 5.57 5.75 5.74 5.63 
apex4 9/19/438 0.31 0.26 0.29 0.31 
apex5 117/88/1227 0.31 0.43 0.35 0.33 
b12 15/9/431 0.02 0.03 0.03 0.04 
clip 9/5/167 0.03 0.02 0.03 0.02 
con1 7/2/9 0.03 0.04 0.04 0.04 
cordic 23/2/1206 0.21 0.26 0.25 0.23 
cps 24/109/654 0.42 0.51 0.57 0.59 
duke2 22/29/87 0.07 0.07 0.07 0.07 
e64 65/65/65 0.06 0.08 0.09 0.12 
ex4p 128/28/620 0.11 0.16 0.19 0.21 
ex1010 10/10/1024 0.16 0.18 0.25 0.24 
misex2 25/18/29 0.11 0.12 0.13 0.12 
misex3 14/14/1848 0.66 0.68 0.63 0.61 
misex3c 14/14/305 0.14 0.12 0.11 0.10 
table3 14/14/135 0.08 0.11 0.11 0.12 
table5 17/15/158 0.04 0.05 0.05 0.06 
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TABLE III 
BDD PACKAGE TIME STATISTIC FOR VARIOUS HASH KEY 

STRATEGIES TESTED ON BDD PRINTING ALGORITHM 

Algorithm performance  [s] Fun. 
name 

inp/out/cubes  
(1) (2) (3) (4) 

alu4 14 / 8 / 1028 0.11 0.10 0.11 0.10 
apex1 45 / 45 / 206 2.25 2.21 2.23 2.22 
apex2 39 / 3 / 1035 1.81 1.80 1.83 1.84 
apex4 9/19/438 0.03 0.02 0.02 0.02 
apex5 117/88/1227 0.16 0.15 0.16 0.16 
b12 15/9/431 0.01 0.01 0.01 0.01 
clip 9/5/167 0.01 0.01 0.01 0.01 
con1 7/2/9 0.01 0.01 0.01 0.01 
cordic 23/2/1206 0.04 0.03 0.04 0.04 
cps 24/109/654 0.07 0.06 0.07 0.06 
duke2 22/29/87 0.02 0.02 0.02 0.01 
e64 65/65/65 0.01 0.01 0.02 0.02 
ex4p 128/28/620 0.01 0.01 0.01 0.01 
ex1010 10/10/1024 0.02 0.01 0.02 0.02 
misex2 25/18/29 0.03 0.04 0.04 0.03 
misex3 14/14/1848 0.16 0.13 0.14 0.13 
misex3c 14/14/305 0.02 0.01 0.02 0.02 
table3 14/14/135 0.02 0.01 0.02 0.02 
table5 17/15/158 0.02 0.01 0.02 0.02 

VI. CONCLUSION 

This paper describes the use of various hash keys in 
implementation of basic BDD algorithmson the top of a BDD 
package.I experimentally performed a detailed analysis of 
hashing in BDD package using BDD algorithms computation 
and direct performance monitoring. The ultimate goal is to 
exceed the computation performance for various BDD 
algorithms of BDD packages. 

From experimental results, it is evident that different hash 
key strategies can be used in different points of BDD package 
computation. Especially, hash key strategies in basic BDD 
ccomputationsare promising. Further work will be devoted to 
deeper exploiting these possibilities as well as exploiting 
different hash key strategies of BDD packages. 
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