

Efficient Implementation of Hashing in BDD Package
Miloš M. Radmanović1

Abstract – The efficient manipulation of Boolean functions is
an important component of CAD tasks. Binary Decision Diagram
(BDD) packages have always been sensitive to hash design. This
paper describes the use of various hash keys in implementation
of basic BDD algorithms. The various hash key strategies have
been implemented within a BDD package. In this paper, I
experimentally performed a detailed analysis of hashing in BDD
package using BDD algorithms computation and direct
performance monitoring. The ultimate goal is to exceed the
computation performance for various BDD algorithms of BDD
packages.

Keywords – Boolean functions, BDD package algorithms,hash
key strategies.

I. INTRODUCTION

Binary Decision Diagrams (BDDs) have become the
dominant data structure for representing Boolean functions in
computer-aided-design (CAD)applications [1]. They are
widely used in various areas of CAD: logic synthesis, testing,
simulation, design and simulation verification [2]. [3], [4].

In practice, the memory required by large BDDs is typically
the limiting factor for CAD tools. In same cases, especially
with various BDD algorithms, run time is also a limiting
factor. Therefore, considerable research has been intended for
more efficient BDD algorithms implementation [4], [5], [6],
[7], [8].

Various BDD algorithms are usually built on the top of a
BDD package. Many BDD package implementations have
been built in a variety of programming languages (C, C++,
Lisp, Java) [9], [10], [11], [12]. The most of BDD packages
are freely available in public domains (on the Web). The
packages CAL (UC Berkeley, USA), CMU (CMU/ATT,
USA), and CUDD (Boulder, CO, USA)are famous.The
packages IBM (IBM Watson, USA), Tiger (Bull/DEC/Xorix,
USA) and TUD (Darmstadt, Germany) are popular [13]. The
choice of the BDD package might be guided by the following
aspects: functionality, software interface, robustness,
reliability, portability, support and performance. Naturally,
performance is of concern [14], [15], [16], [17], [18], [19].
But, from performance comparative studies, BDD packages
behave similarly as long as they are not put to theextreme
[13]. They are many parameters that influence the run-time of
the BDD package, for example: programming language,
software and hardware platform, BDD node structure, type of
garbage collection, unique and operation hash table size, and
hash keystrategiesof tables [1], [20], [21].

The concept of hash miss complexity of the BDD package
has been introduced by paper [21]. It also has been shown that
run-time of BDD algorithms depends on BDD node and

operations hashing strategies of the BDD package.
This paper describes the use of various hash keys strategies

in implementation of a BDD package and their influence on
the run-time of the basic BDD algorithms on the top of a BDD
package. The various hash key strategies have been
implemented within a BDD package.I build a simple software
tool for evaluating algorithms depending on hash key of the
BDD package. Using this software tool, I experimentally
performed a detailed analysis of hashing in BDD package.
The analysis of hashing usesbasic BDD algorithms
computation and direct performance monitoring of the BDD
package.

This paper is organized as follows: Section 2 shortly
introduces the BDD representation of Boolean
function.Section 3 describes the BDD package technique
includingbasic BDD algorithms. Section 4presents the hash
key strategies of the BDD packages. Section 5shows
experimental analysis of hashing in BDD package and gives
some examples of using various hash keys. Some concluding
remarks end the paper.

II. BINARY DECISION DIAGRAM

The Binary Decision Diagram (BDD) is a graphic
representation of the Shannon’s expansion of a Boolean
function. The concept of BDD was first proposed by Lee in
1959 [22]. It has been developed into a useful data structure
by Akers [23] and later by Bryant [2], who introduced a
concept of reducedordered BDD (ROBDD), and a set of
efficientoperators for their manipulation.

The BDD is directed acyclic graph that contain non-
terminal nodes, two terminal nodes, and edges. Non-terminal
nodes are labeled with variables xi and have two outgoing
edges. Outgoing edges are labeled ‘0’ and ‘1’ values of
variable xi. Terminal nodes contain values ‘0’ and ‘1’. The
truth table entry of Boolean function labels edges from the
root node to the corresponding terminal node. An example of
the BDD representation for the function

321321),,(xxxxxxf is shown in Figure 1.

The strength of BDDs is that they can represent Boolean
function data with high level of redundancy in a compact
form, as long as the data is encoded in such way that the
redundancy is exposed.

It is well known that the size of the BDD for a given
Boolean function depends on the variable order chosen for the
function.

Other variants of BDD have been developed to address
some of the problems with BDDs. Boolean expression
diagrams (BEDs) are a generalization of BDDs that can
represent any Boolean circuit in linear space.Zero-suppressed
binary decision diagrams (ZDDs) are similar to BDDs but use
a different reduction rule. ZDDs are generally more efficient
for representing sparse sets. Binary moment diagrams

1MilošM. Radmanović is with the Faculty of Electronic
Engineering, Aleksandra Medvedeva 14, 18000 Niš, Serbia, E-mail:
milos.radmanovic@gmail.com

837

(BMDs) are a generalization of BDDs to linear functions over
other domains than Booleans, such as integers or real numbers
[24].

Fig. 1. BDD for the function 31 2 3 1 2(, ,)f x x x x x x .

III. BDD PACKAGE TECHNIQUE

In this section I describedthree data structures that are
fundamental to most BDD packages.

The main principles of BDD package implementation are
[2], [3], [13]:
 BDD nodes are data structures that contain a variable

identifier, “1” and “0” children pointers and “next” pointer
that links nodes together belonging to the same collision
chain in the unique table.

 BDD nodes are kept in a unique table.
 BDD operations are sped up by using an operation table.
 The order of variables may be changed to reduce the total

number of nodes.
 Recycling of nodes is easily implemented by keeping a

reference count for each node.
 BDD packages use breadth-first traversal of the directed

acyclic graphs.
It is obvious what needs to be stored for each node in a

BDD package data structure: the variable field that labels the
node and two edges field to point children nodes. There
should obviously also be a field to identifier non terminal
nodes from terminals. BDD traversal uses a “visited”
field.Garbage collection might use a reference counter
field.Chaining of nodes in a hash table needs a “next” field.
The decisions made in defining the basic node data structure
have an immediate impact on several related aspects. All this
data requires certain memory space and needs to be packed
into a node structure or object [14].

The unique table maps a triple of (v, G, H) of BDD node,
where v is the variable identifier, G is the node connected to
the "1" edge, and H is the node connected to the "0" edge.
Each node in the BDD has an entry in the unique table. Before
a new node is added to the BDD, a lookup in the unique table
determines if the node for that function already exists [3],
[14].

The If-Then-Else or ITE operator forms the core of the
BDD package. ITE is a Boolean function defined for inputs F,
G and Hwhich computes: “IfF Then G Else H”. ITE
operations can be used to implement all two-variable Boolean
operations.The operation table records results of operations on
BDDs. Typically it stores the fact that R = op(F,G,H), i.e., the

BDD Ris the result of the operation op applied to three BDD
arguments F, G, and H, in a operation table [3], [14].

Garbage collection invalidates entries that refer to dead
nodes. Most BDD packages use a reference counting garbage
collector.

Originally designed to support the standard operations on
Boolean functions, BDD packages have grow to build in
various algorithms. Basic BDD algorithms are based on a
recursive formulation that leads to a depth-first traversal of the
directed acyclic graphs representing the BDD. The depth-first
traversal visits the nodes of the BDD on a path-by-path basis.
The large in-degree of a typical BDD node makes it is
impossible to assign contiguous memory locations for the
BDD nodes along a path. Therefore, the recursive depth-first
traversal leads to an extremely disorderly memory access
pattern [5].

The most of BDD algorithms are the result ofsome other
basic BDD algorithms yet to be completed. A
comprehensiveset of BDD manipulation algorithms are
implemented usingthe above techniques. The most common
BDD algorithms are, for example,BDD
construction,BDDsaddition,and BDD printing [2], [3], [13].

IV. HASH KEY STRATEGIES OF THE BDD

PACKAGES

The unique table is usually implemented as a hash table
[25]. For greater flexibility, open hashing with collision
chains is normally used. The collision lists can be kept sorted
[1] to reduce the number of memory accesses required for a
lookup on average. The unique table might be divided in
subtables, one for each variable [14].

The size of the hash table is either a prime number or a
power of two. For hashed insertion, the hash table is used in a
two-way associative manner: the hash function calculates an
index k (hash key) for a node (v, G, H) and the node is found
either at k hash entry or in the collision list. The hash key
should obviously be composed of the memory position of the
node and its successors or by defining a signature for each
node which consists of the variable associated with that node
and a pseudo random number [1].

It should be noticed that the hash key calculation of the
unique table can be defined as follows:

(, ,) (() ()) mod UTH v G H m G op m H hs (1)
where m(G) and m(H) denote memory addresses of the nodes
G and H, hs denotes hash table size, and op represents some
logic or arithmetic operation.

The operation table is usually implemented as a unique
table [25]. The hash function calculates an index k (hash key)
for anoperation (F, G, H) and the operation is found either at k
hash entry or in the collision list.

It should be noticed that the hash key calculation of the
operation table can be defined as follows:

(, ,) (() () ()) mod OTH F G H m F op m G op m H hs (2)
where m(F), m(G) and m(H) denote memory addresses of the
nodes F, G and H, hs denotes hash table size, and symbol op
represents some logic or arithmetic operation.

838

Experimentally, it is proved that efficient operation for
symbol op can be + or [1], [8], [9], [13], [14].

From previous consideration, it is evident that various hash
key strategies can be defined:
(1) (, ,) (() + ()) mod UTH v G H m G m H hs

(, ,) (() + () + ()) mod OTH F G H m F m G m H hs

(2) (, ,) (() + ()) mod UTH v G H m G m H hs
(, ,) (() () ()) mod OTH F G H m F m G m H hs

(3) (, ,) (() ()) mod UTH v G H m G m H hs
(, ,) (() + () + ()) mod OTH F G H m F m G m H hs

(4) (, ,) (() ()) mod UTH v G H m G m H hs
(, ,) (() () ()) mod OTH F G H m F m G m H hs

V. EXPERIMENTAL RESULTS

It is interesting to consider proposed hashing strategies that
could be applied to BDD package and tested on basic BDD
algorithms.

Below I give tables of BDD package performanceusing
different basic BDD algorithms. I performed the testing on a
PC Pentium IV on 2,66 GHz with 4GB of RAM (MS
Windows 7). The memory usage for all tests was limited to 2
GB.The size of unique and operation table was limited to
65536 entries. The garbage collection was activated if the
total number of BDD nodes and operations in memory
became greater than 524288. All benchmarks were used in the
Espresso-mv or pla format [31].

Table 1, Table 2, and Table 3 gives the complete list of
experimental results of BDD package time statistics for hash
key strategies proposed in the previous section tested on BDD
construction, BDD addition and BDD printing algorithms,
respectively.

All times in all tables are given in seconds. It should be
noticed that hash key strategies in previous section and in
headers of all tables have same denotation with symbols (1),
(2), (3), and (4). Last four columnsfor each table presents
comparable time performance of BDD package hash key
strategies.

There are 15 of 19 benchmarks in table 1 for which
algorithm has minimum computation time for strategy (4).
According to that fact, the BDD construction algorithm is in
most cases efficient for strategy (4).

There are 14 of 19 benchmarks in table 2for which
algorithm hasminimum computationtime for strategy (1).
According to that fact, the BDD addition algorithm is in most
cases efficient for strategy (1).

There are only 17 of 19 benchmarks in table 3for which
algorithm has minimum computationtime for strategy (2).
According to that fact, the BDD printing algorithm is in most
cases efficient for strategy (2).

For comparison, the hash key strategy (3) was least
efficient for all BDD basic algorithms.

This BDD basic algorithms dependency of proposed hash
key strategies is a major advantage of this paper.

TABLE I
BDD PACKAGE TIME STATISTIC FOR VARIOUS HASH KEY

STRATEGIES TESTED ON BDD CONSTRUCTION ALGORITHM

algorithm performance [s] Fun.
name

inp/out/cubes
(1) (2) (3) (4)

alu4 14 / 8 / 1028 0.20 0.15 0.18 0.15
apex1 45 / 45 / 206 5.78 5.18 5.04 4.80
apex2 39 / 3 / 1035 3.38 3.31 3.32 3.40
apex4 9/19/438 0.08 0.05 0.04 0.04
apex5 117/88/1227 0.34 0.30 0.29 0.27
b12 15/9/431 0.01 0.01 0.01 0.01
clip 9/5/167 0.01 0.01 0.01 0.01
con1 7/2/9 0.02 0.01 0.01 0.01
cordic 23/2/1206 0.08 0.06 0.05 0.03
cps 24/109/654 0.16 0.15 0.15 0.14
duke2 22/29/87 0.03 0.03 0.02 0.03
e64 65/65/65 0.02 0.01 0.01 0.01
ex4p 128/28/620 0.01 0.01 0.01 0.01
ex1010 10/10/1024 0.02 0.02 0.02 0.02
misex2 25/18/29 0.05 0.05 0.05 0.05
misex3 14/14/1848 0.24 0.20 0.20 0.21
misex3c 14/14/305 0.05 0.03 0.02 0.04
table3 14/14/135 0.03 0.02 0.01 0.01
table5 17/15/158 0.02 0.01 0.01 0.01

TABLE II
BDD PACKAGE TIME STATISTIC FOR VARIOUS HASH KEY

STRATEGIES TESTED ON BDD ADDITION ALGORITHM

algorithm performance [s] Fun.
name

inp/out/cubes
(1) (2) (3) (4)

alu4 14 / 8 / 1028 0.40 0.44 0.42 0.45
apex1 45 / 45 / 206 9.33 9.25 9.53 9.22
apex2 39 / 3 / 1035 5.57 5.75 5.74 5.63
apex4 9/19/438 0.31 0.26 0.29 0.31
apex5 117/88/1227 0.31 0.43 0.35 0.33
b12 15/9/431 0.02 0.03 0.03 0.04
clip 9/5/167 0.03 0.02 0.03 0.02
con1 7/2/9 0.03 0.04 0.04 0.04
cordic 23/2/1206 0.21 0.26 0.25 0.23
cps 24/109/654 0.42 0.51 0.57 0.59
duke2 22/29/87 0.07 0.07 0.07 0.07
e64 65/65/65 0.06 0.08 0.09 0.12
ex4p 128/28/620 0.11 0.16 0.19 0.21
ex1010 10/10/1024 0.16 0.18 0.25 0.24
misex2 25/18/29 0.11 0.12 0.13 0.12
misex3 14/14/1848 0.66 0.68 0.63 0.61
misex3c 14/14/305 0.14 0.12 0.11 0.10
table3 14/14/135 0.08 0.11 0.11 0.12
table5 17/15/158 0.04 0.05 0.05 0.06

839

840

TABLE III
BDD PACKAGE TIME STATISTIC FOR VARIOUS HASH KEY

STRATEGIES TESTED ON BDD PRINTING ALGORITHM

Algorithm performance [s] Fun.
name

inp/out/cubes
(1) (2) (3) (4)

alu4 14 / 8 / 1028 0.11 0.10 0.11 0.10
apex1 45 / 45 / 206 2.25 2.21 2.23 2.22
apex2 39 / 3 / 1035 1.81 1.80 1.83 1.84
apex4 9/19/438 0.03 0.02 0.02 0.02
apex5 117/88/1227 0.16 0.15 0.16 0.16
b12 15/9/431 0.01 0.01 0.01 0.01
clip 9/5/167 0.01 0.01 0.01 0.01
con1 7/2/9 0.01 0.01 0.01 0.01
cordic 23/2/1206 0.04 0.03 0.04 0.04
cps 24/109/654 0.07 0.06 0.07 0.06
duke2 22/29/87 0.02 0.02 0.02 0.01
e64 65/65/65 0.01 0.01 0.02 0.02
ex4p 128/28/620 0.01 0.01 0.01 0.01
ex1010 10/10/1024 0.02 0.01 0.02 0.02
misex2 25/18/29 0.03 0.04 0.04 0.03
misex3 14/14/1848 0.16 0.13 0.14 0.13
misex3c 14/14/305 0.02 0.01 0.02 0.02
table3 14/14/135 0.02 0.01 0.02 0.02
table5 17/15/158 0.02 0.01 0.02 0.02

VI. CONCLUSION

This paper describes the use of various hash keys in
implementation of basic BDD algorithmson the top of a BDD
package.I experimentally performed a detailed analysis of
hashing in BDD package using BDD algorithms computation
and direct performance monitoring. The ultimate goal is to
exceed the computation performance for various BDD
algorithms of BDD packages.

From experimental results, it is evident that different hash
key strategies can be used in different points of BDD package
computation. Especially, hash key strategies in basic BDD
ccomputationsare promising. Further work will be devoted to
deeper exploiting these possibilities as well as exploiting
different hash key strategies of BDD packages.

REFERENCES

[1] D. Long, “The Design of Cache-friendly BDD
Library“,Proceedings of the 1998 IEEE/ACM international
Conference on CAD, pp. 639 - 645, 1998.

[2] R. Bryant, "Graph-based Algorithms for Boolean Function
Manipulation", IEEE Trans. Computers, vol C-35, pp. 667-691,
1986.

[3] K. Brace, R. Rudell, R. Bryant, "Efficient implementation of a
BDD package", Proc. Design Automation Conf., pp. 40-45,
1990.

[4] R. Rudell, "Dynamic Variable Ordering for Binary Decision
Diagrams", Proc. Conf. on CAD, pp. 42-47, 1993.

[5] J. Sangavi, R. Ranjan, R. Bryton, A. Sangiovanni-Vincentelli,
"High Performance BDD Package Based on Exploiting Memory
Hierarchy", Proc. of the Design Automation Conf., 1996.

[6] H. Ochi, K. Yasuoka, S. Yajima, "Breadth-First Manipulation of
Very Large Binary-Decision Diagrams", Proc. Int. Conf. on
CAD, pp. 48-55, 1993.

[7] P. Ashar, M. Cheong, "Efficient Breadth-First Manipulation of
Binary Decision Diagrams", Proc. Int. Conf. on CAD, pp. 622-
627, 1994.

[8] G. Janssen, “Design of Pointerless BDD Package,“10th Int.
Workshop on Logic & Synthesis Granlibakken, Lake Tahoe,
CA, 2001.

[9] F. Somenzi, "CUDD: CU decision diagram package", Public
Software, University of Colorado, Boulder, CO, 1997,
http://vlsi.colorado.edu/~fabio/.

[10] T. Stornetta, F. Brewer, “Implementation of an Efficient Parallel
BDD Package”, Proc. of 33rd Design Automation Conference,
pp. 641–644, 1996.

[11] R. Sumners, "Correctness Proof of a BDD Manager in the
Context of Satisfiability Checking", Proc. of ACL2 Workshop
2000, Technical Report TR-00-29, 2000.

[12] C. Krieger, "A Java 1 Implementation of a BDD Package",
University of Utah, 1998, http://www.cs.colostate.edu/~krieger/.

[13] G. Janssen, “A Consumer Report on BDD Packages,“Proc. of
the 16th Symposium on Integrated Circuits and Systems Design,
pp.217-223, 2003.

[14] F. Somenzi, “Efficient Manipulation of Decision Diagrams,”
Int. J. Software Tools for Technology Transfer (STTT), vol. 3,
no.2, pp. 171-181, 2001.

[15] B. Yang, R. Bryant, D. O’Hallaron, A. Biere, O. Coudert, G.
Janssen, R. Ranjan, F. Somenzi, “A Study of BDD Performance
in Model Checking,” Int. Proc. FMCAD, Palo Alto, CA, pp.
255-289, 1998.

[16] S. Manne, D. Grunwald, F. Somenzi, "Remembrance of Things
Past: Locality and memory in BDDs", Int. Proc. of the 34th
ACM/IEEE Design Automation Conference, 1997, pp. 196-201.

[17] M. Lam, Context-Sensitive Pointers Analysis Using Binary
Decision Diagrams, John Whaley, 2007.

[18] M. Sentovich, "A Brief Study of BDD Package Performance".
Int. Proceedings of the Formal Methods on CAD, 1996, pp. 389-
403.

[19] S. Minato, N. Ishiura, S. Jajima, "Shared Binary Decision
Diagram with Attributed Edges for Efficient Boolean Function
Manipulation", Int. Proc. of the 27th ACM/IEEE Design
Automation Conference, 1990, pp. 52-57.

[20] B. Yang, Y., Chen, R. Bryant, D. O'Hallaron, "Space and time
efficient BDD construction via working set control". Int. 1998
Proceedings of Asia and South Pacific Design Automation
Conference , 1998, pp. 423-432.

[21] N. Klarlund, T. Rauhe, "BDD algorithms and cache misses",
BRICS Report Series RS-96-5, Department of Computer
Science, University of Aarhus, 1996.

[22] C. Lee, “Representation of Switching Circuits by Binary
Decision Programs,” Bell System Technical Journal, vol. 38, pp.
985-999, 1959.

[23] S. Ackers, “Binary Decision Diagrams”, IEEE Trans. on
Computers, vol. C-27(6), pp. 509-516, 1978.

[24] T. Sasao, M. Fujita, “Representations of Discrete Functions”,
Kluwer Academic Publishers, Boston, 1996.

[25] A. Aho, J. Hopcroft, J. Ullman,“Data Structures and
Algorithms“,Addison-Wesley, Mass., USA, 1983.

[26] R. Rudell, Espresso Misc. Reference Manual Pages, 1993,
http://embedded.eecs.berkeley.edu/pubs/downloads/espresso/ind
ex.htm

