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Abstract – This article extends the generalized vehicle routing 
problem model by introducing variable traveling time. An 
overview is given for the different approaches to formulate a 
model and a set of criteria is defined to choose the proper one. 
Based on the analysis a model is chosen and modified to fit the 
requirements of the real life problems. Analysis of the most 
promising algorithm families for solving the model is presented. 
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I.  INTRODUCTION 

The vehicle routing problems (VRP) are widely spread 
combinatorial optimization problems. They appear in practice 
during the solution of different logistics problems in different 
areas of everyday life. In the basic formulation of the problem 
a set of identical vehicles are based in a central depot. 
Vehicles have to be routed optimally to supply customers with 
known demands. The vehicles have known capacity and 
traveling costs. Each customer is a part of only one route and 
is visited only once by the vehicle serving the route. VRP is a 
NP-hard problem [24], since it is generalization of the well-
known TSP problem where the number of vehicles is only 
one. VRP and its variants is applicable in many areas of social 
and economic life like postal services, bank deliveries, air 
cargo transportation, school bus routing and many others. This 
problem is relevant to all logistic services since one of the 
goals of modern society is reduction of the consumption of 
unrecoverable sources of energy and diminishing the 
environmental pollution. 

VRP was first described by Dantzig and Ramser [10]. The 
problem was a real-world application concerning the delivery 
of gasoline to service stations. They proposed mathematical 
programming formulation and an algorithm to get near-
optimal solution of a problem instance with twelve service 
stations and four trucks. After the publication of their paper 
the research in this area flourished. 

Based on the practical needs different formulations of VRP 
appeared. On Fig. 1 some of the major sub-problems with the 
relations between them are given. The descriptions of the sub-
problems below are based on the following model: Let 

 be a complete graph where VG  (V, A)  0,, n  is the set 
of all vertices and A be the set of all arcs. Vertices i 1,, n  
correspond to the customers, whereas vertex 0 corresponds to 
the depot. A nonnegative cost  is associated to each arc cij

(i, j) A  and is the travel cost spent to go from customer i to 

customer j. Generally loop arcs  are not allowed and this 

is imposed by defining . Each customer i has an 

associated demand  to be delivered. The depot has a 

fictitious demand 

(i, i)
cii

di  0

d0  0 . A set of K identical vehicles each 

with capacity C start to service a customer from the depot. To 
assure that there is a feasible solution it is assumed that 
di C; i 1,, n . Each vehicle may perform only one route 

and it is assumed that K is not smaller than Kmin where Kmin is 
the minimum number of vehicles needed to serve all the 
customers. This minimum number can be determined by 
solving the Bin Packing Problem (BPP) derived from the VRP 
model. BPP is a NP-hard problem but the problem instances 
with hundreds of elements can be effectively solved to 
optimality [23]. All VRP sub-problems have to find K simple 
circuits, each circuit corresponding to a route, with minimum 
cost. The cost of a route is defined as the sum of costs of all 
arcs part of the route. A route should visit the depot vertex and 
each customer vertex is a part of exactly one route. Each of 
the sub-problems defined below extends this definition by 
adding additional constraints. 

CVRP DCVRP
[Route length]

VRPTW

[Time Windows]

VRPB VRPPD

VRPPDTW

[Backhauling] [Mixed service]
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Figure 1. Major sub-problems of VRP and their relations [24] 
 

 Capacitated VRP (CVRP) - to the basic model described 
above it is added that demands of the customers on the 
same route should not be greater than C; 

 Distance-Constrained VRP (DCVRP) - based on the basic 
model where each route length or route duration should be 
less than a limit. There is no capacity constraint; 

 VRP with Backhauls (VRPB) - extension of CVRP where 
customers set V \ {0}  is partitioned in two subsets. The 
first subset L contains l linehaul customers each requiring 
a given amount of products to be delivered. The second 
subset B contains n-l backhaul customers where a given 
quantity of inbound products must be picked up. 
Customers are numbered so that L  {1,, l} and 
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B  {l 1,, n} . In the VRPB there exists a precedence 
between linehaul and backhaul customers. If a route serves 
both types of customers linehaul customers should be 
served first. The total demand of linehaul and backhaul 
customers does not exceed, separately, the vehicle 
capacity C; 

 VRP with Time Windows (VRPTW) - extension of CVRP 
where to each customer i a time interval [ai, bi] called time 

window is associated. Customers can be served only in the 
associated time window. The vehicle stops at each 
customer on the route for si  time instants. VRPTW is 

generalization of CVRP, when ai  0  and bi    for 

each ; i V \ {0}
 VRP with Pickup and Delivery (VRPPD) - extension of 

CVRP where to each customer i two quantities di  and p  

are associated representing the demand of homogeneous 
commodities to be delivered and picked up at customer i. 
Vehicles may pickup commodities from an origin 
customer i and deliver them to a destination customer j. 
The current load of the vehicle along the route must be 
nonnegative and may never exceed the vehicle capacity C. 
All customers part of an origin-destination relation should 
be part of the same route. There is also a precedence as 
origin customers should be served before destination 
customers; 

i

 VRP with Backhauls and Time Windows (VRPBTW) - a 
combination between VRPB and VRPTW; 

 VRP with Pickup and Delivery and Time Windows 
(VRPPDTW) - a combination between VRPPD and 
VRPTW; 

 
There are three main approaches that can be found in 

literature [22, 24] to formulate a mathematical programming 
model for the basic VRPs presented above. The first type of 
models are known as vehicle flow formulations. They use 
integer variables, associated with each arc or edge of the 
graph which counts the number of times the arc or edge is 
traversed by the vehicle. These models do not keep track of 
the commodities delivered at each customer. Further they can 
be subdivided to two-index vehicle flow formulations, in 
which the variables are indexed according to the start and end 
vertices only, and the three-index vehicle flow formulations, 
in which the variables have a third index which distinguishes 
one vehicle from another. These models are more frequently 
used for the basic versions of VRP. They are particularly 
suited for cases in which the cost of the solution can be 
expressed as the sum of the costs associated with the arcs, and 
when the most relevant constraints concern the direct 
transition between the customers within the route, so they can 
be effectively modelled by an appropriate definition of the arc 
set and of the arc costs. On the other hand, vehicle flow 
models cannot be used to handle many practical issues, e.g., 
when the cost of a solution depends on the overall vertex 
sequence or on the type of the vehicle assigned to a route. 
Moreover, the linear programming relaxation of vehicle flow 
models can be very weak when the additional operational 
constraints are tight. 

The second family of models is based on the so-called 
commodity flow formulation. In this type of models, 
additional integer variables are associated with the arcs or 
edges and represent the flow of the commodities along the 
paths travelled by the vehicles. Vehicle flow models have an 
exponential number of constraints to enforce connectivity 
while commodity flow models impose this requirement by 
using a set of continuous variables representing the flow of 
one or more commodities between the depot and the 
customers. They were introduced by Garvin et al. [14] and 
later extended by Gavish and Graves [15, 16]. 

The models of the last type have an exponential number of 
binary variables, each associated with a different feasible 
circuit. The VRP is then formulated as a Set-Partitioning 
Problem (SPP) calling for the determination of a collection of 
circuits with a minimum cost, which serves each customer 
once and, possibly, satisfies additional constraints. For the 
first time these models were proposed by Balinski and Quandt 
[2]. A main advantage of this type of models is that it allows 
extremely general route costs, e.g., depending on the whole 
sequence of the arcs and on the vehicle type. Moreover, the 
additional side constraints need not take into account the 
restrictions concerning the feasibility of a single route. As a 
result, they often can be replaced by a compact set of 
inequalities. This produces a formulation whose linear 
programming relaxation is typically much tighter than that in 
the previous models. Note, however, that these models 
generally require dealing with a very large number of 
variables. 

II. A MODEL OF VEHICLE ROUTING PROBLEM WITH 

SOFT TIME WINDOWS AND VARIABLE TRAVELING 

TIME 

The vehicle routing problem for which a model is presented 
is based on a real-world routing problem. It is generalization 
of VRPTW where multiple time windows are supported. The 
service takes place entirely in the city area. This means that 
the main city roads are overloaded during the rush hours and 
the travel duration for a road segment will vary significantly 
depending on the time of the day. The city infrastructure does 
not provide paid highways that can be used to construct more 
expensive but faster routes. The average number of customers 
to be served is 600. The number of vehicles is up to 40 and 
they are identical. The model is robust enough to allow future 
modifications such as addition of new constraints or changes 
in the objectives. 

A model is introduced for a vehicle routing problem with 
soft time windows and variable traveling times. The model is 
based on the model presented in [19] and is chosen because of 
its simplicity and flexibility. Let  be a complete 
directed graph with a vertex set V

G  (V, E)
 {0,, n}  and an edge set 

E  {(i, j) | i, j V, i  j}  and K  {1,,k}  be the vehicle set. 

Vertex 0 is the depot and the other vertices are the customers 
to be served. Each customer i, each vehicle k and edge 
(i, j) E  is associated with: 

 gi  0  - the demand of goods of customer i; 
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 pi (t) - time window cost function of the start time t of the 

service at customer i; 
 p0 (t)  - time window cost function of the arrival time t at 

the depot; 
 Ck  0  - the capacity of vehicle k; 

 dij  0  - the distance between vertices i and j; 

 qij (t)  - traveling time function from i to j; 

 

 
Figure 2. Cost function  for two time windows pi (t)

 
Function  may be piecewise linear and look as given 

on Fig. 2. The actual slope may be chosen according to the 
preferences for the real problem instance and affects how 'soft' 
is a time window. The model can be transformed to hard time 
windows if is defined as follow: 

pi (t)

pi (t)

pi (t) 
0 t  within the time window 
 t  outside the time window






 

Function  is different from the described in [19]. In 

the proposed model the function will reflect the different 
traveling times for the same road depending on what time of 
the day the vehicle passes it. It takes the current time and 
returns the estimated travel duration between customers i and 
j. 

qij (t)

Let  k  be the route traveled by vehicle k and  k (h) be the 

hth customer in route  k . By  the number of nodes on 

route 

nk

 k  is given. For convenience  k (0) k (nk 1)  0  for 

all k (i.e. every route will start and finish at the depot). With 
  the set of the routes followed by the vehicles will be 
denoted 

  (1, 2,, k ) 

 
Additionally let us introduce the following notations: 

 si  - the start time of service at customer i; 

 sa
k  - the arrival time of vehicle k at the depot; 

 s ;  (s1, s2,, sn, sa
1, s2

a,, sn
a )

Let us introduce also binary variables yik ( ) 0,1   for 

 and i V \ {0} k  K  by 

                         yik ( )1 i  k (h)                               (1) 

                           
Equation (1) holds for exactly one h  {1, 2,, nk }. This 

means that yik ( ) 1  holds if and only if vehicle k visits 

customer i. We can express the total distance traveled by all 

vehicles as d( ) , the total time window cost for all customers 
p(s) , the total traveling time cost q( , t) and the total excess 

amount g( )  as follows: 

                                                    (2) d( )  d
h0

nk


kK

  k (h), k (h1)

i )                        p(s)  pi (s
iV \{0}

  p0

kK



k (h), k (h1)(

giyik ( )

(sa
k )                    (3) 

                       q                       (4) ( , t)  q t)
h0

nk


kK



                g( )  max
iV \{0}

 Ck, 0










kK

              (5) 

The mathematical programming model will be:   
Minimize 
              c( , s, t)  d( )p(s) q( , t)g( )          (6) 

subject to 

                         yik ( ) 1
kK

 ,     i                     (7) V \ {0}

Constraint (7) requires that every customer i V \ {0}

d

must 
be served only once by exactly one vehicle. The proposed 
objective function is a weighted sum of ( )p(s)  

q( , t)g( ) . The constants   0,  0  and   0 in (6) 

determine the relative importance of each component of the 
objective function. They are set in advance depending on the 
preferences for each specific problem instance.   

From the problem description it is obvious that the best 
approach to solve it will be to use a heuristic algorithm. 
Current methods to solve VRP problems to optimality use 
Branch-and-Bound, Branch-and-Cut [24], Branch-and-Cut-
and-Price [12] or Set-Covering-Based algorithms [1]. They 
are able to solve problem instances of up to about 100 
customers with variable success rate [21]. For larger problem 
instances both academic research [21] and commercial 
organizations [18] concentrate on heuristics. Heuristics are 
also more flexible than the exact approaches [21] and will be 
easily adapted to changes in the problem model. Heuristic and 
metaheuristic approaches are intensively researched in the 
recent years [5–7]. VRP with time windows has wide range of 
applications and is well studied [4, 13, 17]. Mathematical 
models with multiple time windows are also present in 
literature [11, 20]. 

Many of the heuristics and metaheuristics for VRPTW 
show variable performance and are also very dependent on the 
quality of the initial solutions [8]. As an improvement a 
multistart local search heuristic approach is proposed. It 
consists of two phases with an optional post-optimization 
procedure. In the first phase sequential insertion heuristics is 
used to generate a set of initial solutions. In the second phase 
inter and intra-route cross-exchange is invoked to reduce the 
total distance of the solutions with the minimum number of 
routes. In [19] this model is solved using an algorithm based 
on iterated local search. It starts from an initial solution  and 
searches for a better solution in the neighborhood N( ) . 
Standard neighborhoods as 2-opt*, cross-exchange and Or-opt 
with slight modifications are used for neighborhoods N( ) . 
Approaches using behaviorally inspired algorithms are also 
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present in the literature. Bee colony algorithm is proposed in 
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