
 

Architecture of a Flexible Web-Based Framework for 
Building Models and Solving Decision Optimization 

Problems 
B. Staykov1, F. Andonov2,D. Vatov1, K. Genova1, L. Kirilov1, V. Guliashki1 

Abstract – A flexible web-based framework for multiple 
criteria decision support is presented. The system is targeted at 
different types of users – researchers, educators and business 
people and should facilitate the problem solving process of 
different types of optimization problems, mainly single and 
multi-objective linear programming problems with continuous 
and/or integer variables. 
 

Keywords – Web-based systems, decision support, single and 
multiple objective optimization. 

I. INTRODUCTION 

The evolution of decision support systems can be traced 
back to the dawn of computers. "First-generation" systems 
were single computer - single user type and implemented only 
one method or a few similar methods of one type (see [17, 18] 
for example). With the spreading of the Internet some 
network-based systems appeared – both web-based and 
traditional client-server(A good survey about such systems is 
given in [12]). Yet most of the systems were problem-oriented 
and they could only solve one specific problem(see  [15, 16] 
for example). Many of them were based on the java applet 
technology, but this approach has many limitations. This 
architecture is still basically a client-side technology, and is 
limited by the resources of the client machine and hence the 
data volume, memory, CPU power and problem complexity. 
Later on group decision support systems gained popularity, 
where not a single decision maker is responsible for the 
decision but a group of decision makers.  

Web architecture by itself does not allow persistent 
connections, and because of that there are limits on the 
response time and the amount of data exchanged between the 
server and client, but the solving time for this kind of decision 
problems is highly undetermined. As a result, the usability of 
such systems is limited to problems whose solving time does 
not exceed the browser time-out interval.  

The development of the Internet and its total penetration in 
all social areas combined with globalization brought a new 

breed of systems – less monolithic, more versatile, 
incorporating cutting-edge software technologies [12, 14].  

The modern Internet technologies provide platform-
independent, remote computation, as well as exchange of 
complex multimedia information. The end users of decision 
support systems can focus their efforts on problem analysis 
and decision making. 

The use of Decision support systems in general, requires 
specific knowledge background about the methodology of 
mathematical optimization and its applicability to the user’s 
professional area. 

As a result of the above, it is a challenge to create a 
universal system, which is method-, user-, solver-agnostic and 
applicable to a wide range of example, research and business 
problems. In this paper, we describe a software system which 
represents our understanding of what the architecture of such 
a system should look like.It is under the provisional name 
WebOptim. 

II. IMPORTANT ADVANTAGES OF WEBOPTIM 

Web-accessible: The researchers [11, 12] in the area of 
operational research (OR) consider that the development of 
Web-access technologies is of key importance for the 
usability of optimization, so as the name suggests, the system 
should be accessible from the Web via a browser, and users 
should be able to define, solve, save, load and share their 
decision problems.  
User-agnostic: WebOptim should allow to be used by 
different types of users – educators, who demonstrate the 
large variety of single and multiple criteria methods on 
different size and type of problems, researchers, who will test 
their own methods or/and solvers and business people, who 
will solve their real-world decision making problems with a 
method of their choice. The diversity of users and goals 
translates into the requirements of a highly-customizable user 
interface and an extendible framework. Users should be able 
to define their own problems, to solve them with any 
applicable method, save them for later evaluation, andbe able 
to see examples or similar problems. Another way for 
broadening the user target group is by offering well-formed 
and solved examples of typical optimization problems. Less-
experienced users will be able to browse these examples and 
hopefully find one similar to their own problem.  

1Boris Staykov, E-mail:bstaykov@iinf.bas.bg 
Daniel Vatov, E-mail: daniel.vatov@gmail.com 
Krasimira Genova, E-mail: kgenova@iinf.bas.bg 
Leoneed Kirilov, E-mail: lkirilov@iinf.bas.bg 
Vassil Guliashki, E-mail:vggul@yahoo.com 

are with the Institute of Information and Communications
Technologies- BAS, 1113 Sofia, “Acad. G. Bonchev,bl. 2, Bulgaria. 

2Filip Andonov is with the NewBulgarianUniversity, Sofia 1618, 
z.k. Ovtcha Kupel,.Montevideo str. № 21, Bulgaria, E-mail: 
vonodna@yahoo.com 

Solver-agnostic: WebOptim should incorporate several 
solvers with metadata about their applications and methods 
they are used by. System administrators will be able to add 
new solvers, written in different programming languages.  
 

857 



Fig. 1. Architecture of WebOptim 
 
Method-agnostic: WebOptim should have metadata for all 
the included methods, their applications and the solvers they 
use. System administrators will be able to add new single or 
multiobjective solvers. 
Heterogeneous: The system should allow to be continuously 
developed by several teams, using different software 
technologies. That is why a reliable and flexible environment 
for data and command interchange is needed to provide the 
common ground. The authors think that web-services are the 
answer to this requirement. Using web-services allows 
developers to choose a programming language, operating 
system and software design of their own taste and to glue their 
piece of the puzzle with as little effort as possible.  

III. STRUCTURAL DESCRIPTION 

For maximum modularity the system is composed of the 
following main components: user management and security, 
intermediate module, database and solvers. The principle 
schema of this intermediate system is given in Fig. 1. 

A. User management and security 

In order to use the system, each user must create its own 
personal profile. The profile containing login credentials, user 
type, personal details, defined problems, their solutions and 
additional information about errors and specific solving 
details will be stored in a common database. The registration 
of users will be done through standard web page forms. After 
registering and logging in their profile, the users will be 
provided with interface for defining and solving problems. 
Those problems must be defined by one of the below 

described standard syntaxes. After syntax verification, each 
problem will be stored in the database with unique ID 
parameter. The user will be able to see a list of these defined 
problems and their status. There will be four possible states of 
this problem status: 

- “Not solved”. When the problem is defined but still not 
sent to the solver; 

- “Waiting for solution”. When the problem is submitted to 
the solver queue and solution is expected when ready. In this 
state the user should not be able to edit the problem definition; 

- “Solution obtained”. When a solution is obtained from 
the solver and is ready to be previewed; 

- “Solver error”. The solver returns some error. 
This part of the module will provide tools for the user to 

preview problems and solutions; start or interrupt solution 
process for certain problem; preview error messages received 
from the solvers and to obtain specific detailed debug 
information about the solving process (if the chosen solver 
provides this information). 

B. Database 

The main database will store all the data for the users, 
problems they have saved, solutions and metadata about the 
methods and solvers for use in the intermediate system. The 
metadata should contain at least the solver's name, 
description, type (integer, mixed integer, multicriterial, etc.) 
and type(s) of accepted input. Because of the network 
environment the system will be running in, if the solvers need 
a database for temporary data during the solving process, they 
can use their DBMS and databases to minimize the 
communication volumes and thus reduce solving time. To 

858 



overcome the lack of connection persistence between the 
client and the server in web-based systems all intermediate 
and final results are stored in the database, which is possible 
due to the nature of these types of optimization problems, 
where every intermediate result can be used as a reference 
point for the next(every method can be used as 
interactive).This also allows unbindingof the calculation 
process from the user interface. The user is no longer required 
to wait for the solution and to keep the connection alive 
because all the results will be stored in database and 
associated with his/her personal profile and problem.  

C. Solvers 

All solvers will implement a common XML SOAP[2, 3] 
protocol for communication with the intermediate system. 
This allows diversity of the solvers, the machines they are 
running on, the language they are written in, etc. The 
limitation of this approach is that due the asynchronous nature 
of this type of communication, the control will be harder to 
implement, because in a simplified way the communication 
looks like this:  intermediate system sends problem for solving 
and when ready, the solver gives an answer or an error (if 
occurred). Because there are many problem definition 
formats, it is certain that at some point in time there will be a 
set of solvers that support a non-intercepting set of syntax 
formats. An intermediate module will translate the problem 
definition to a format understandable by the solver. Another 
way of interaction will be optimization problem data to be 
delivered directly to the solver. This will be the case of 
already existing solvers or solvers that are considered useful 
for the system’s users. They will have their own syntax for the 
input. Besides AMPL as a modeling language there are many 
other modeling languages used by quality solvers that is worth 
integrating into the system. Possible modeling formats are 
listed bellow [9]: 

- MPS file format - The MPS format is supported by most 
lp solvers and thus very universal. The model is provided to 
the solver via an ASCII file. This format is very old and 
difficult to read by humans. See [8] for a complete description 
of the format. 

- lp file format - The lp format is the native lpsolve format 
for providing LP models via an ASCII file to the solver. It is 
very readable and its syntax is very similar to the 
Mathematical formulation. See [6] for a complete description 
of the format 

- CPLEX lp file format - The CPLEX lp format is another 
format for providing LP models via an ASCII file to the 
solver. It is very readable and its syntax is very similar to the 
Mathematical formulation. It is a format used by the CPLEX 
solver. See [4] for a complete description about the format 

- LINDO lp file format - The LINDO FILE format is 
another format for providing LP models via an ASCII file to 
the solver. It is very readable and its syntax is very similar to 
the Mathematical formulation. It is a format used by the 
LINDO solver. See [7] for a complete description about the 
format. 

- GNU MathProg file format - The GNU MathProg format 
is another format to provide LP models via an ASCII file to 

the solver. It is very readable and its syntax is very similar to 
the Mathematical formulation. It is a format used by the 
GLPK solver and a subset of AMPL. It has also the possibility 
to use loops. See [9]. 

- LPFML/OSIL XML file format - The LPFML XML 
format, currently named OSIL after becoming part of COIN-
OR project (https://www.coin-or.org/), is another format to 
provide LP models via an ASCII file to the solver. This 
format is very recent and uses XML layout. It is not very 
readable by humans, but because of the XML structure is very 
flexible. For more informationsee [10]. 

Solvers will be exposed to external systems following Web 
Services [1] paradigm. 

D. Intermediate core system module 

The fact that the system will be used as an educational and 
research tool means that it has to be as open and extensible as 
possible, so new methods, solvers, problem types, and 
basically every kind of modules can be added later. The 
development team is heterogeneous and not static, especially 
for the projected lifetime of the product, so different software 
libraries and components and different program languages 
will be used in it, which put a lot of stress on the system 
architectural design. To make these different parts glued 
together several modern technologies and principles will be 
applied to the development process – extensive use of XML 
as communication standard and web services.  

There is one major problem that concerns the 
intercommunication between the different modules in the 
system. The problem appears because this 
intercommunication needs to be done asynchronous due to its 
nature - mainly HTTP and SOAP protocols, which have very 
tight response timeouts. Depending on its size, each solving 
problem will take different time to be solved by a certain 
solver and sent back to the sender module. This makes it 
impossible for the communication to be done in an 
uninterrupted cycle of request-response. 

This problem is solved by bringing in an intermediate 
system module, which will take care of all the communication 
between end user interfaces, database storage and solvers. 
This system will perform two main tasks – user management 
and solvers communication. 

E. Solvers communication 

On the other hand, this intermediate system module will 
handle the bidirectional communication with solvers, based on  
the XML SOAP protocol. 

There are two subtasks in this part of the module – sending 
requests to the solvers and providing a web service for 
handling solver responses for the solutions of the problems. 

Sending a solver request will be done by posting data to the 
unified solver web service through XML SOAP protocol and 
will contain the following mandatory fields: 

- Problem ID (an integer number field); 
- Problem syntax (a string field (different syntaxes are 

described in another part of the article)); 
- Problem definition (a string field); 

859 



860 

- Debug (a Boolean field) – defines if additional debug 
information is requested. 

Additional fields may be implemented at later stage of the 
project. After posting this information, a confirmation 
response is expected from the solver and the problem state is 
changed to “Waiting for solution”. The solver response web 
service will expect information posting from solvers (again in 
a standard XML SOAP protocol) and will look for the 
following fields: 

- Problem ID (an integer number field); 
- Problem solution (a string field) - in case of a successful 

solution; 
- Solver error message (a string field) - in case of a solver 

error; 
- Debug information (a string field) – in case it is 

requested. 
When such a request is received, the module will perform 

search in the database for the certain problem ID, store the 
solution (or the error message) and change the problem status 
to “solution obtained” or “solver error”, according to the 
current case. The web service must response to the solver 
request; otherwise the solver must continue to try to post the 
solution after a certain amount of time, until a confirmatory 
answer is received! 

IV. CONCLUSION 

There exists a variety of stand-alone, network and web-
based decision support systems. Despite the fact that with the 
increased demand for such systems in global economy, the 
development of semantic technologies and many R&D teams 
working on less fragmented, more universal systems, there is 
still room for improvement. The key features of the proposed 
web-based system WebOptimare: 

• Useful to a wide variety of users from different 
professional backgrounds with different level of optimization 
competence. 

• A user friendly customizable interface, reflecting the 
needs of different users and accessible worldwide via the 
Web; 

• A set of solvers which covers the most popular 
optimization and decision making problems; 

• Designed to be easily extended by adding new solvers; 
• Providing an API interface for external use by third party 

developers. 
By implementing our view of such architecture, we intend 

to overcome the inherited limitations of web-based systems in 
general and target a larger user group. Several other similar 
systems exists, but they are not widely used, mainly because 
specialists from different areas do not recognize their 
problems as optimizationproblems and they are not familiar 
with the available software instruments for decision support. 
In that respect, WebOptim is an attempt to promote and 

encourage the use of decision support optimization systems in 
all areas where such problems occur.  

One future direction for the development of WebOptim is 
to make it able to solve single and multi-objective nonlinear 
optimization problems by implementing the necessary solvers, 
methods and user interfaces. 

ACKNOWLEDGEMENT 

This research is supported in part by the Bulgarian National 
Science Fund, Grant No DTK02/71 and IICT-BAS research 
project Modeling, Optimization and Multiple Criteria 
Decision Making. 

REFERENCES 

[1] Web Services Architecture. Technical report, World Wide Web 
Consortium, February 2004. 

[2] Paul V. Biron and Ashok Malhotra, editors. XML Schema Part 
2: Datatypes. W3C Recommendation. W3C, second edition, 
October 2004. 

[3] http://www.xml.com/pub/a/2000/02/09/feature/index.html 
[4] P. Notebaert K. Eikland. Cplex file format. 
 http://lpsolve.sourceforge.net/5.5/CPLEX-format.htm. 
[5] P. Notebaert K. Eikland. Lindo file format. 
 http://lpsolve.sourceforge.net/5.5/LINDO-format.htm. 
[6] P. Notebaert K. Eikland. Lp file format. 
 http://lpsolve.sourceforge.net/5.5/lp-format.htm. 
[7] P. Notebaert K. Eikland. lp_solve reference guide. 
 http://lpsolve.sourceforge.net/5.5. 
[8] P. Notebaert K. Eikland. Mps file format.  
 http://lpsolve.sourceforge.net/5.5/mps-format.htm. 
[9] A. Makhorin. Gnu linear programming kit, modeling language 

gnu mathprog.http://plato.asu.edu/gnu_mp.pdf. 
[10] A. Makhorin. Optimization services linear language 

https://www.coin-or.org/OS/OSlL.html 
[11] P. Valente, G. Mitra. The evolution of web-based optimization: 

From ASP to e-Services. Decision Support Systems, Volume 
43, Issue 4, (2007) 1096–1116. 

[12] H. K. Bhargava, D. J. Power and D. Sun, “Progress in Web-
based decision support technologies”, Decision Support 
Systems, Volume 43, Issue 4, August 2007, pp. 1083 – 1095 

[13] A.M. Geoffrion, R. Krishnan, Prospects for operations research 
in the E-business era, Interfaces 31 (2) (2001)], 6-36. 

[14] M. Andersson, H. Grimm, A, Persson, Amos Ng, A Web-
basedsimulationoptimizationsystemforindustrialscheduling, In: 
Proceedings ofWSC '07, (Henderson, S. G. et al, eds.), IEEE 
Press Piscataway, NJ, USA 2007. 

[15] Plácido Rogério Pinheiro1 and José Auriço Oliveira,WEB - 
Based Optimization System Applied to High School Schedule 
Building, http://www.asap.cs.nott.ac.uk/patat/patat04/553.pdf. 

[16] P. Korhonen, A Visual Interactive Support System for Multiple 
Criteria Decision Making, Belgian Journal of Operations 
Research, Statistics and Computer Science, 27 (1), 1987, 3-15. 

[17] V. Vassilev, B. Staykov, F. Andonov, K. Genova, M. Vassileva, 
Multicriteria Decision Support System MOLIP, Cybernetics and 
Information Technologies, 2 (1), 2002, 3-15. 

 

https://www.coin-or.org/OS/OSlL.html
http://www.wintersim.org/
http://www.asap.cs.nott.ac.uk/patat/patat04/553.pdf

