

Database Modelling and Development of Code Generator
for Handling Power Grid CIM Models

Sasa Devic1, Branislav Atlagic2 and Zvonko Gorecan3

Abstract – This paper presents a solution for modelling
database, in order to store and manipulate CIM models, and
code generator that will ease the work on developing support
system for that database. The work contains basic description of
CIM models and exchange procedure between clients
participating in power trading process. Developed code
generator relies on database relational schema. It is designed for
power grid CIM models, but it can be used for other models as
well. The general instructions for developing code generator are
given. At the end, the overall CIM data handling process and
resulting performances are presented.

Keywords – CIM model, database, code generating, ICEST
2011.

I. INTRODUCTION

Since general use of electrical energy has started, till the
end of the XX century, the customers were forced to buy
energy from monopolistic power supply companies which
covered the wider area they lived in. Customers had no choice
to choose between different, probably more affordable,
companies. Economic experts rightly claimed that
monopolistic companies are starting to slow down the
technological progress. If more companies were fighting for
the costumers, the final result would brought a better and
cheaper energy supplies to the customers.

Events that followed were expected. Big, monopolistic,
usually state companies, were reconstructed into large number
of smaller companies or sectors that took part in managing
different parts of once one company. For this market to
operate, it was necessary to introduce auction houses for
electrical energy trading. Auction houses work as a agency
agent between different participators in trade, and therefore
they need specialized software tools for trade. Opposite to
other markets of energy resources, in trading with electrical
energy the key role has the knowledge of physics of the
system or, in other words, the knowledge of electrical supply
network and its capabilities. For those needs a unique model
for describing every network of different vendors was
developed[1].

For developing software tools that would operate with such
model, specialized software companies started to form. Those
companies required knowledge of both electric power
engineers and software engineers to develop a unique solution
for the problem. This work gives contribution to those efforts.

Since 1951, UCTE (Union for the Co-ordination of
Transmission of Electricity) standard was used to exchange
electrical network models between different EMS (Energy
Managment System) operators. But since then, many things
have changed. The need to model data more precise, and to
cover electrical elements not included in UCTE model, such
as shunts, generators, transformer windings, switchers and so
on, a new CIM (Common Information Model) model was
developed. In 2009 UCTE became part of ENTSO (European
Network of Transmission System Operators). ENTSO
accepted CIM standard as preferred, and in 2009 first
interoperability tests were made, although CIM model is still
in developing phase[2].

II. CIM MODEL

A. Basics

The CIM Model Exchange Profile is a ENTSO standard
that is based on the CIM standards produced by IEC WG13
(The International Electrotechnical Commission, Work Group
13). The purpose of CIM standard is to define how members
of ENTSO, using software from different vendors, will
exchange network models as required by the ENTSO business
activities. The following basic operations are sufficient for
TSOs (Transmission System Operator) to satisfy ENTSO
network analysis requirements: export (TSO may use the
profile to export its internal network model in such way that it
can be easily and unambiguously combined with other TSO
internal models to make up complete models for analytical
purposes), import (TSO must be able to import exported
models from other TSOs and combine it to make complete
model), exchange (any model, covering any territory, sent to
any other party, must carry the data who formed it, which data
brings and for which use case is designed for).[3].

B. File structure

ENTSO CIM model are packed and exchanged as XML
(Extensible Markup Language) data model. Data division
among files is based on the kind of information in each file.
This division typically divides less rapidly changing
information from more rapidly changing information, setting
up the situation where some exchanges are smaller because
they only contain files that have changed. Therefore, model
information exchange is divided into three files, TSO
equipment model, TSO topology and State variables.
Information from all three files can be combined into one
“complete model”, which concatenates all data.

1Sasa Devic is with Telvent DMS D.O.O., Sremska 4, 21000 Novi
Sad, Serbia. E-mail: sasa.devic@dmsgroup.rs.

2Branislav Atlagic is with Telvent DMS D.O.O., Sremska 4,
21000 Novi Sad, Serbia. E-mail: branislav.atlagic@telventdms.com.

3Zvonko Gorecan is with Telvent DMS D.O.O., Sremska 4, 21000
Novi Sad, Serbia. E-mail: zvonko.gorecan@dmsgroup.rs.

The CIM model itself is designed with abstract and
concrete classes. Through those classes the physics of

865

mailto:sasa.devic@dmsgroup.rs
mailto:branislav.atlagic@telventdms.com
mailto:zvonko.gorecan@dmsgroup.rs

electrical power system, its states at the specific time, are
mapped to the model. Abstract classes are used to ease the
complexity of the system, they group and define base
attributes and associations, dividing more and less general
parts of the system. Again, real (concrete) parts of the system
are left to be described by concrete classes, which inherit
much of its attributes and associations from abstract classes.
Concrete classes are dependent on abstract classes. Still, there
are concrete classes that do not inherit any abstract class.
Anyway, data exchange involves only concrete classes. As an
example Tap Changer class will be presented (see Fig. 1).

Fig. 1. Tap Changer (object-oriented model)

Tap Changer class is inherited by Ratio Tap Changer and

Phase Tap Changer. Both, Ratio and Phase Tap Changer
have all the attributes and associations of the Tap Changer,
but with addition of a few of its own. There are some
attributes and associations in Ratio Tap Changer that do not
exist in Phase Tap Changer, and vice versa. On the other
hand, if some concrete class, like Impedance Variation Curve,
has an association to Tap Changer, which is an abstract class
and can not exits in data exchange, it actually associates to
either Ratio or Phase Tap Changer. Association to the
abstract class is a true problem for mapping object-oriented
model (hierarchical model) to the database relational data
model (flat model), which will be more explained in the next
chapter.

Tap Changer is chosen because it is simple enough for an
example and it has all kinds of associations that we wish to
demonstrate. Other elements of CIM model have more
complicated associations which would be hard to follow, but
with the same types of associations like Tap Changers has.

III. DATABASE MODELLING

As we know, basic elements of which relational databases
consists are tables (which are composed of one or more
columns) and relations between them. The relational data
model has been around for many years and has a proven track
record of providing high performance and flexibility. But,
there is no possibilities of defining real inheritance among
data tables or defining an abstract table. Databases are
designed to contain large amounts of data, and to allow quick
and relatively easy way to access them. Any kind or mapping
object-oriented class model to relational database model is not
completely possible, modeling of the two do not follow the
same design. To solve this problem, we have implemented
some patterns:

 For each abstract class that we have in our object-
oriented model, appropriate table must be created (in this
work we will call them “abstract tables”, like in [4]).

 For each concrete class, appropriate table must be created
(in this work we will call them “concrete tables”, like in [4]).

 For each association to other class, abstract or concrete,
appropriate relation to the table that represents that class must
be made.

 Inheritance is mapped as identification relation to the
table that represents “parent” class (key columns of a “child”
are all from “parent” table). The exception from this rule are
abstract and concrete classes that have no “parent” class.

So far this is straightforward, but with large amount of
redundant data! If we store all data that abstract classes define,
very quickly our database is going to grow enormously. In
order to prevent that from happening, since all data defined in
abstract classes must be withheld within their inheritors, can
we remove all tables that represent abstract classes and use
only tables that represent concrete classes? By doing that,
relational model would simplify and reduce amount of data in
database, but there is a problem with that...

If there is a class with an association to the abstract class, in
relational data model we cannot model that as a relation to the
tables that represent concrete classes that inherit that abstract
class. In relational model we cannot map one object-oriented
association to a multiple database-oriented relations,
depending on the number of how many classes inherit aimed
abstract class. For example, in table Impedance Variation
Curve we would have to have relations to both tables that
represent Ratio and Phase Tap Changer, since they both
inherit Tap Changer class in object-oriented model. If we
could define a reference with a choice clause, that could be
one of possible solutions for the problem (but that is not
possible). We are forced to retain tables that represent abstract
classes. The solution to the problem is to use abstract tables
only as key containers, to which we can set relation through
which we can find needed concrete table. All data is stored in
the concrete tables only. Here we will mention that we need
abstract tables from maintenance reasons as well. CIM model
is still in development process and it is expected to change.
Relational model for Tap Changer is shown in Fig. 2.

IV. CODE GENERATING

Now, we have determined what kind of data is exchanged
between different software vendors (CIM XML files) and we
know in what form to store such data in our database. The
piece of the puzzle still missing in our software solution is
how? We need to have a support to insert the data into
database and later to read from it and manipulate with data.

This may sound like a simple task, but if we have to solve
many simple tasks over large amount of different types of
data, our simple problem becomes a big problem. Developed
relational model has 86 tables with very complex relations
among them. Possible solution is to make a new problem,
which will solve our first problem – to write a program that
will write a program that we need.

We have designed our database relational model to reflect
object-oriented model, we can use its meta-data (data that

866

describes data) to generate program code and use it to
manipulate with database. Code can be generated in such way
that will allow us to manipulate with objects that reflect their
states back to the database.

Fig. 2. Tap Changer (relational model)

A. Database reader

First step is to develop Database reader, a software
component that reads meta-data from database relational
schema. All database meta-data is possible to read. For every
table that we have created, we can read its name an other
meta-data related to table. When we know what tables are
present in database, in a similar way we can read their
columns meta-data. For each column we can read its name,
data type, size, numeric precision and scale, is mandatory, is
read only, and most importantly is it a primary key column, a
foreign key column, or both. We can even read column
constraints on data it can contain. Important to mention is that
based on foreign keys (imported keys), we can find out which
primary keys from one table are used as foreign keys in other
tables (exported keys).

To ease our search through meta-data, we have created an
object model where we will store meta-data that we have read.
Since it's storing a description of meta-data, which is data that
describes data, that model is actually a meta-meta-data model.
All other parts of our code generator rely on this meta-meta-
data model.

B. Database procedure generator

In order to fully exploit database we have to use database
procedures. Insert, update and delete statements are very slow
when compared to equivalent procedures. The main drawback
when using statements is that they need to be parsed first, and
then executed. In contrast, procedures executes immediately.

To avoid writing all required procedures manually, we have
created a Database procedure generator. Its job is to generate
(write) those procedures, using meta-meta-data. We know the
names of tables, their columns and data types.

For insert procedure we need to define input parameters,
which are values for columns of a table in which we wish to
insert a new row. Next step is to define what our procedure

needs to do, in this case to insert a new row into the table.
Table name, its columns, and type are used as input
parameters in this process.

For update and delete procedures we need to do similar
work, except we are not generating insert, but update and
delete statements. Needed syntax is different, but the logic is
similar for all.

Views are also generated by this component, to allow us
faster and easier read of data.

All in all, with some additional procedures that will be
explained later in this work, we have generated almost 15.000
lines of code for those procedures, and 2.500 lines to drop
them later.

C. Database API generator

To work with database in a way like we work with objects
in our program language, we need to develop a
communication layer that will allow us to do that. Database
API generator, based on meta-meta-data model, is developed
to generate an object-oriented model who's states will be
reflected on database.

We need to find a way to generate a component layer to
stand between database and the rest of our application. Lets
observe our tables in database. Each table is consisted of rows
and columns. Columns describe a certain data of one type,
with specific constraints. We will map columns like attributes
of a certain class. Rows can be viewed as sections of data of a
certain table. We will map rows like a classes, where class
name is delivered from table name. Additionally, based on
imported keys we have generated association to the class that
represents a certain table in database, and based on exported
keys – collection of associations. By generating classes that
we need, we are allowed to use them in our code like any
other class that we have wrote by hand. The example of this
code is given in Listing 1.

class TapChangerEl {
 // Exported Relations
 List<ImpVarCurveEl> impVarCurveEls;
}
class ImpVarCurveEl : CurveEl {
 // Imported Relation
 TapChangerEl tapChangerEl;
}
class RatioTapChangerEl : TapChangerEl { ... }

Listing 1: Generated code example

Classes that we have created must have support to call
database procedures that we created by Database Procedure
generator. By applying similar logic we are able to generate
class functions that are able to prepare the call to database, set
needed parameters, execute the call, and finally do additional
work with result. Class functions generated for that are insert,
update and delete.

Database API generator is also in charge for generating
functions for fetching data from database and creating class
objects from it. Fetch functions include various forms,
depending by which criteria data is read (by primary keys, by
foreign, by columns, by no criteria or by combination of

867

them). Fetch functions rely on views generated by Database
Procedure generator.

By the standard, CIM model is exchanged with XML files.
Since C# programming language and .NET have well
developed technologies to support manipulation with XML,
software application is developed using those technologies.
This covers Cim Manager Lib, as described in [5].

This code generator is designed to cover some of specific
needs of CIM model, but it can be used in general use, as
well. Some of specific needs are presented in next section.
Sum of generated lines of code, for 86 tables, is 506,781 lines. To communicate with database Database Api is generated.

It is a wrapper component to ease the access to the database.
Database supported by this project is Oracle 10 XE, an library
used for communication is ODP.NET (Oracle Data Provider
for .NET). ODP.NET. It is possible to add support for other
databases as well.

V. IMPORT-EXPORT MODEL

So far, our model, that we got as the output of code
generator, is covering all functionality we need, with ability to
be easily expanded in the future. But, in order to get any data
from concrete tables, first we have to fetch their abstract
tables that index them! Number of calls to database can be
multiplied several times depending on the number of abstract
tables through which we have to search to get the data in some
concrete table. In general, as deeper the hierarchy of object-
oriented model is, as slower the communication to database
will be.

Cim Mediator is a component for joining the Cim Manager
Lib and Database API into one solution. It represents the
entrance point of application and contains and exposes
functions for import, export and for fetching functions of
entire CIM model.

As we mentioned before, data contained in abstract tables
is also contained in tables that “inherit” them (basically only
keys). Since the aim is to reduce number of calls to the
database, we could read only concrete tables, and by doing
that we get data from abstract tables as well. This approach
reduces number of calls to the minimum, and there is no
bottleneck to the database. To compare performances without
and with this principle see table I (old and new for export).

Based on that idea, to read only concrete tables, it is
possible do the same in opposite direction. Database
procedures will take parameters for inserting a row into a
concrete table, first appropriate data will be inserted to all
needed abstract tables and after that to the aimed concrete
table. By applying this principle we have achieved
performance acceleration in both ways. For this we had to
expand both Database Procedure generator, to create such
procedures in database, and Database API generator, to give
us access to those procedures. To compare performances
without and with this principle see table I (old and new for
import).

Fig. 3: Development process

VII. CONCLUSION

In this work we have explained what CIM models are, and
the way how to work with them when stored in database. We
have presented components that help us work with database.
Code generator is described, through which we solved the
problem of writing large amount of code in limited time. The
most important advantage of code generating is that allows us
to relatively easy expand our generator depending on current
needs. Another advantage is that it gives us the power to go
even further with code generating. If we need to have client-
server architecture with our database, we can make an
extension for code generator and generate web service and
client that we need. This could be done as an update in the
future.

TABLE I
PERFORMANCE TABLE FOR IMPORT AND EXPORT CIM MODEL WITH

50.000 ELEMENTS (54MB FILE)

 Import [s] Eksport [s]

No. old new old new

1 1173,0 188,9 49,42 4,30

2. 1377,7 209,5 47,42 2,69

3. 1014,6 212,8 47,58 2,71

4. 1470,2 183,6 47,79 2,66

5. 944,5 148,3 48,35 2,64

REFERENCES

[1] Daniel Kirschen, Goran Štrbac „Fundamentals of Power System
Economics“, 2005.

[2] Union for the Co-ordination of Transmission of Electricity CIM
interoperability Test – EPRI, 2009.

[3] Dragan Tomić, Ranka Slijepčević, Lajoš Martinović, Nemanja
Živković, „Validation and merging of national transmission
network models into one interconnective model”, 2009.

VI. SOFTWARE PACKAGE

[4] “UCTE CIM Model Exchange”, component interface exchange,
revision 1.0, version 14, 2009. Software application is build with two basic components,

Cim Manager Lib, Database Api and Cim Mediator.
Application development process, that we are about to
explain, is presented on Fig. 3.

[5] Lajoš Martinović, Ranka Slijepčević, Nemanja Živković,
“Software tool for conversion between power system models”,
2010.

868

