

Built-in Testing of Embedded Software Systems
Irena Pavlova1, Aleksandar Dimov2

Abstract – Embedded software systems encompass a broad
range of devices, which may be mixed hardware/software system
dedicated for a specific application. Usually embedded software
systems are part of and manipulate and control a larger, physical
system. There are a lot of unresolved issues in building reusable,
reliable and predictable systems of that class. One such issue is
software testing, which currently is done in an ad-hoc manner. In
this paper we propose an approach for testing of embedded
software systems, based on the so-called Built-In-Testing (BIT).
BIT is a concept, where given software module or system has
capabilities to perform testing itself.

Keywords – Embedded systems, Component Bases Software
Development (CBSE), Built-In-Testing (BIT).

I. INTRODUCTION

Embedded systems are often distributed real-time systems
comprising electronics and software. Such systems are
increasingly penetrating every aspect of our lives and work,
from telecommunication systems, transport, energy and
utilities, health, finance, education, tourism and environment.
The embedded systems industry is competing with decreasing
time to market and increasing product differentiation.

Both lead to increasing dependence on software required to
be flexible enough for rapid reuse, extension and adaptation of
system functions. It is often difficult to test and verify
embedded systems because of the intrinsic “embedded
dimension”. This is an effect of that the software has to be
designed on a platform different from the platform on which
the application is intended to be deployed and targeted.

Embedded systems are also often mission-critical and needs
to be extensively verified and testing is one of the major
challenges. Compared to standard PC software embedded
software is harder to observe, test, and debug.

The contribution of this paper is towards interesting and
needed research areas within BIT for component-based
embedded systems. With the above aim we propose a
reference model for Quality of Service (QoS) BIT testing. The
main target at this stage is non-functional requirements like
timeliness and performance. Within this context we focus on
the following main concerns:

• Increase software quality, in terms of functional and non-
functional properties

• Shorten development times, in terms of the development
process and specifically test reuse.

The remainder of the paper is structured as follows: In
section 2 CBSE for Embedded systems is presented. Section 3

makes an overview of BIT technology. Section 4 discusses the
application of BIT for components in embedded systems.
Section 5 presents a reference model for QoS BIT testing of
component based embedded systems. Finally, section 6
concludes the paper.

II. CBSE FOR EMBEDDED COMPONENT BASED

SYSTEMS

Assembling new software systems from existing
components is an attractive alternative to traditional software
engineering practices which promises well defined software
architectures, reduced developments costs as well as reuse [4].
However, these benefits will only occur if separately
developed components can be made to work effectively
together with reasonable effort [8]. However, lengthy and
costly verification and acceptance testing may impact
negatively the independent component development and
system integration.

This way application of new processes, approaches and
instruments for supporting effective integration and reducing
manual system verification effort in the context of embedded
software systems is needed. This may be done by equipping
components with the ability to check their execution
environments at runtime. Built-in-test (BIT) is such an
instrument, providing a model for elaboration of detailed tests
while developing the component.

One of the major driving-forces behind component-based
development is reuse; however, in many companies reuse has
not been very successful even though component-based
development has been introduced in the software lifecycle. It
is often required to restructure the organization to reflect the
component based process, i.e., divide component development
from system development. Another major obstacle for reuse is
efficient administration (e.g., version and configuration
management) with growing component repositories [5].

Most embedded systems have requirements not present in
other systems, e.g., timeliness, low footprint, low energy
consumption, etc.

Such non-functional requirements need to be verified and
validated, adding another dimension of testing to the system.
Hence, it is essential to satisfy not only the functional
behavior, but also extra-functional properties such as, e.g.,
timing and dependability attributes. These systems
characteristics usually implies that embedded systems are
statically configured, i.e., the components used and their
interconnections are decided at design or configuration time.
Here, the binding is static, as opposed to the dynamic binding
used in most desktop component technologies. 1Irena Pavlova is with the Faculty of Mathematics and

Informatics, Sofia University, James Boucher 5, Sofia, Bulgaria
E-mail: irena_pavlova@fmi.uni-sofia.bg.

2Aleksandar Dimov is with the Faculty of Mathematics and
Informatics, Sofia University, James Boucher 5, Sofia, Bulgaria
E-mail: aldi@fmi.uni-sofia.bg.

Furthermore, embedded systems are resource constrained in
the sense that the per-unit cost is a main optimization
criterion, i.e., the use of computer and computing resources
should be kept at a minimum. Also, due to the high variability

869

of many embedded systems, it is common within the
embedded systems industry to use product-line architectures.
Because of this, reuse of architectures, components, quality
assessments and tests are very attractive for reducing
development costs.

III. BUILT-IN-TESTING OVERVIEW

Testing is a disciplined process that consists of evaluating
the application (including its components) behavior,
performance, and robustness – usually against expected
criteria. One of the main criteria, although usually implicit, is
to be as defect-free as possible.

Expected behavior, performance, and robustness should
therefore be both formally described and measurable.

Compatibility of components is one of the greatest issues. It
is not of much use to specify a component as part of large and
complex software system if it will not deliver what has been
promised. One of the key ways of addressing this issue is to
build components that are self-testing, to ensure that they
meet the specifications for that part of the total application.

BIT [10] proposes to build test-mechanisms into
components and systems during design and coding, so that the
successive testing and maintenance processes can be
simplified. The most interesting feature of the BIT is that tests
can be inherited and reused in the same way as that of code in
the conventional COTS components [7].

Built-in testing of software components can be done in a
large number of ways. The Component+ project [1] developed
a methodology for integrating BIT components into COTS
software, using methods that are a significant extension of the
object-oriented technology. The design principles of BIT for
software components embrace two major perspectives:
Contract testing - to verify a contract between two
components from both parties point of view. Quality of
service testing - to verify that the operating environment of a
software component continues to give the right service, that
the interaction between all components works and that
residual faults in a component prevent proper function of the
component or the system.

The BIT architecture is based on the following elements:
 BIT-component: component that provides a number

of built-in test services and test interfaces, as shown
on Fig. 1.

BIT Interface

Required Interface

Configurational
Interface

Provided
Interface

Fig. 1. BIT Component

 Testers: components that use the test services of

BIT-components to determine whether a system-
level error condition exists.

 Handlers: components that handle errors detected by
BIT components or test components.

 System constructor: a conceptual element,
nominally responsible for the instantiation of (high
level) BIT-components, testers, and handlers, and
their interconnection. Note that both BIT components
and testers can detect error conditions. The BIT
component can detect internal (i.e. component-level)
errors, whilst the testers detect external or system-
level errors arising from incorrect component
interaction.

IV. BUILT-IN-TESTING IN THE CONTEXT OF

COMPONENT-BASED EMBEDDED SYSTEMS

With traditional development approaches, the bulk of the
integration work is performed in the development
environment, giving engineers an opportunity to pre-check
compatibility of system various parts, and to ensure that the
overall deployed application is working correctly. In contrast,
late integration implied by component assembly means that
there is little opportunity to verify the correct operation of
applications before deployment time.

Although component developers may adopt rigorous test
methodologies, with non-trivial software components it is
impossible to be certain that there are no residual defects in
the code - formal proof or 100% test coverage are not viable
options in most practical cases. Compilers and configuration
tools can help to some extent by verifying the syntactic
compatibility of interconnected components, but they cannot
check that individual components are functioning correctly
(i.e. that they are semantically correct), or that they have been
assembled together into meaningful configurations (i.e.
systems). As a result, components that may have behaved
correctly in the sanitary condition of the development-time
testing environment, may not behave so well when deployed
in a system where they have to compete with other (third
party) components for resources such as memory, processor
cycles and peripherals.

Sophisticated verification methods are used to increase the
level of assurance of critical software, particularly that of
safety-critical and mission-critical software. Embedded
software verification is a systems engineering discipline that
evaluates software in a systems context [9].

In order to bring the effectiveness of verification to bear
within a reuse-based software development process it must be
incorporated within the domain engineering process. Failure
to incorporate verification within domain engineering will
result in higher development and maintenance costs due to
losing the opportunity to discover problems in early stages of
development. The component Verification, Validation and
Certification Working Group at WISR 8 found four general
considerations that should be used in determining the level of
verification of reusable components [6]:

 Span of application - the number of components of
systems that depend on the component

 Criticality – potential impact due to a fault in the
component

870

 Marketability – degree to which a component would
be more likely to be reused by a third party

 Lifetime – duration of component usage.
Although encapsulation and information hiding are central

principles for facilitating the design and development of
component based software systems, their very nature also
complicate the task of testing. This is because some of the
information that is necessary for comprehensive testing of
objects and components is by definition hidden to entities
outside a component (e.g. the test software).

Many software components are state machines and the state
information is hidden. Encapsulation and information hiding
thus give rise to a couple of fundamental problems inherited
in conventional software components technologies, which
have yet to be addressed in CBSE:

 Low testability.
 Low maintainability for CBSE actors.
 No support for run-time testing.

These problems hold even when components are supplied
in their complete form, i.e. with the source code. Software is
seldom so well documented that a user unacquainted with a
component can verify it in an easy way. Test software
delivered with the component increases the testability.

A piece of software with encapsulated state information is
testable if we can:

 Set it into a given state before a test.
 Stimulate it with given test data.
 Read the response and the resulting state.
 Compare the actual outcome of the test with

expected outcome.[1]
To make such software component testable it should be

able to get access to the encapsulated state information of the
component before a test is invoked. This holds for tests of
behaviour. For other kinds of testing the test software must
have access to other internals of the component. Hence part of
the testing software has to be built-in.

Besides the testing challenges of standard functional testing
of component-based systems, embedded systems have a range
of extra-functional properties that also need to be verified.
Some of the important attributes for embedded systems that
define quality, besides correct functional behavior, are [2, 3]:

 Real-time properties – violation of time
requirements, despite correct functional behavior,
violates the system behaviour.

 Dependability – the ability of the system to deliver a
service that can be trusted.

 Resource consumption – Many embedded systems
have strong requirements on low and controlled
consumption of different resources.

Besides quality aspects, an important issue for the
embedded systems segment is time-to-market. Component-
based development has shown to be an efficient paradigm for
increasing productivity and lowering development time and
costs. However, component based development for embedded
systems has not been as successful as for, e.g., desktop
systems, especially not considering reuse.

One of the major reasons to this is the lack of support for
configuration and version management.

Thus, the perhaps most important aspects for reducing
development time and time-to-market are:

 Reuse is a basic concept in CBSE that decreases
development time and time-to-market.

 Software configuration management – important
for embedded systems in the context of reusability.

 Verification - To find errors in the code, and
hopefully at an early stage indisputably shortens the
time for testing, redesign etc.

V. BUILT-IN QOS TESTING MODEL FOR

COMPONENT-BASED EMBEDDED SYSTEMS

Within a real (as opposed to a test) system, a component
competes with other components for resources such as
memory, processor cycles and peripherals. Consequently, its
performance may be affected by the system in which it is
integrated. This is particularly critical in real-time systems
where a component may have deadlines to meet or a certain
throughput to achieve. Adequate system performance should
be designed into the system, but this requires components to
be characterized in terms of the resources they require as well
as their functional and dynamic behavior. This is not usually
done, so system performance has to be measured during
development and deployment. Therefore, a requirement exists
for QoS testing to support verification of components
dynamic behavior.

Timing and performance testing is an indisputable part of
each testing effort. The strict requirements towards embedded
systems as well as the utilization of external resources
(components) increase the importance of testing the timing as
well as the performance of the components when integrated
into assemblies.

The reference architectural model we propose for Timing
BIT QoS testing is illustrated on Fig 2. The Timing tester is
intended to measure the time spend for data access for a
particular component scenario. It is important the test for
every component to be performed in a single transaction.
Single transactions are used also with the purpose any time
dependencies to be avoided. Time measurement will start
before the starting of the transaction and will end after the end
of the transaction.

Fault situations are handled by a Handler component. For
example such situation may occur if incorrect or impossible
attempt to access the data in the database is made.

The Component under test should support IBITTiming
interface, which is used to perform a timing test on a single
component. This interface allows subscribing or
unsubscribing for time event for the particular component.

Timing tester provides IBITTimingNotify Interface that is
used for notification for time events and requires IBITError
interface. This interface is used by the Timing Handler, and
provides only one function, which requests the handler to
process the thrown Timing exception. The processing of the
exceptions includes logging the exception in file and other
user defined functions. The IBITErrorNotify interface is
required on the Handler for reporting errors.

871

 Component Under Test

Handler

Timing
Tester

IBITTiming
IBITTimingNotify

IBITErrorNotify

IBITError

872

Fig. 2. BIT Timing Testing Reference Architecture

For realizing performance testing that is presented on Fig.

3, a Performance tester is developed “on the top” of the
Timing tester. The main idea is to use several time tests on
different components. This tester uses a single transaction for
every set of time tests. Fault situations are handled by a
relevant Handler component. This component collects
information about time spent for a particular scenario
involving several different components.

Timing
Tester

Handler

IBITError

IBITErrorNotify

Performance
Tester

IBITPerformanceNotify

IBITPerformance

Fig. 3. BIT Performance Testing Reference Architecture

The Timing tester component must support
IBITPerformance interface. This interface is used when
performing the testing. The IBITPerformance interface allows
for subscribing to a particular set of components, which will
be monitored during the performance test execution.
Performance tester provides IBITPerformanceNotify Interface
that is used for notification of events. Using this interface
performance tester will receive information about time spent
for a method or information that there is an error during the
execution of the method.

VI. CONCLUSION

Real-time aspect is one of the major differences between
embedded software and PC or internet software. Embedded

software systems often interact and controls physical
processes with real-time requirements. Timing is often of first
priority in testing efforts. To use BIT in embedded real-time
systems it is important to understand the relation between the
two.

Testing worst-case response-time is not trivial. Typically,
tests assess within what time the embedded system reacts
(creates an output considering an input). The assessed time
forms an end-to-end latency for the response. Internally, the
system typically involves transactions of several execution
threads that must cooperate to create the correct output. These
threads can in turn experience interference from other parallel
activities in the system. Thus, the goal for the test is to
measure the time from a certain change in the input until a
certain output is produced under maximum disturbance from
other parallel activities. These techniques not only have to set
up a worst-case scenario (which is challenging in itself), but
also have to measure the system non-intrusively, i.e., make
sure that the measurement does not affect the test (probe-
effects).

ACKNOWLEDGEMENT

The work presented in this paper was partially supported by
the National Science Fund, part of the Ministry of Education
and Science in Bulgaria under the ADEESS (MU01-143) and
TASSA (ДО-02-182/16-12-2008) projects.

REFERENCES

[1] Component+ EU FP5 Project, 2006.
[2] I. Crnkovic. Component-based approach for embedded systems.

In Ninth International Workshop on Component-Oriented
Programming, Oslo, June 2004.

[3] I. Crnkovic. Component-based software engineering for
embedded systems. In International Conference on Software
engineering, ICSE’05, St. Luis, USA, May 2005. ACM.

[4] I. Crnkovic and M. Larsson. Building Reliable Component-
Based Software Systems. ISBN 1-58053-327-2. Artech House,
2002.

[5] I. Crnkovic, S. Larsson, and M. Chaudron. Component-based
development process and component lifecycle. In 27th
International Conference Information Technology Interfaces
(ITI), Cavtat, Croatia, June 2005. IEEE.

[6] S. H. Edwards and B. W. Wiede. Software engineering notes,
22,5,17-31. WISR8L 8th Annual workshop on SW Reuse, 1997.

[7] K. J. Fernandez, V. H. Raja, and M. Morley. A system level
testing modeling mechanism in a reengineering environment.
Journal of Conceptual Modeling, issue 18, 2001.

[8] D. Garlan, R. Allen, and J. Ockerbloom. Architectural mismatch
or why it’s hard to build systems out of existing parts. In
Proceedings of the Seventeenth International Conference on
Software Engineering, April 1995.

[9] D. Wallace and R. Fujii. Software verification and validation: an
overview. IEEE Software, 6(3):10–17, May 1989.

[10] Y.Wang, G. King, D. Patel, S. Patel, and A. Dorling. On coping
with real-time software dynamic inconsistency by built-in tests.
Annals of Software Engineering, 7(1):283–296, Oxford, 1999

