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Abstract – Drawing graphs of software systems in a meaningful 
way is both computationally and aesthetically problematic. The 
paper presents a graph layout that improves the existing 
methods making them more suitable for use in the area of 
software visualization and comprehension. The suggested graph 
layout is an extended graph drawing aimed at better 
computational cost and aesthetic results of visualization of 
complex software systems. 
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I. INTRODUCTION 

Graphs have many applications in different areas of 
computer science.  They are used to represent networks of 
communication, data organization, computational devices and 
flow, as well as many others. Two of the main objectives of 
software visualization are to ease the process of understanding 
an unfamiliar software system and to allow visual 
identification of anomalies within the software structure and 
its evolution [1]. The nature of graphs as an abstract model 
lends itself to software visualization through being able to 
show multiple objects and relations as vertexes and edges of a 
graph. 

There are two general types of graph layouts algorithms - 
static and dynamic. The static methods address the problem of 
constructing a one-time graph drawing. Dynamic methods are 
concerned with preserving the user’s mental map so that 
different drawings maintain the overall structure of the graph 
and only reflect individual changes. In order to support 
visualization of the evolution ofsoftware systems, the obvious 
choice are dynamic algorithms because they preserve the 
mental map. 

II. RELATED WORK 

Frishman and Tal [2] focus on the dynamicity of a layout 
by using pinning weights. These weights are assigned to 
vertices between consecutive layouts based on their distance 
to modification. Dynamicity, however, is only a part of the 
graph drawing problem. The most popular solutions for 

drawing graphs are force-directed ones. 
Force-directed methods model the vertices as physical 

bodies with different forces between them. These kinds of 
algorithms are based on the effect of such forces acting on an 
initial graph for a fixed number of iterations or until an energy 
function is minimized. There are two parts of a force-directed 
layout – a force model and a technique for finding minimum 
energy configurations. 

One of the earliest force models for graph drawing was 
proposed by Eades [3] and is widely used today. Eades’ model 
is based on the mechanical model which presents graph 
vertices as rings and graph edges as springs connecting the 
vertices. When too far the springs apply attraction to the rings 
bringing them closer together and when too close repulsion is 
exerted pushing the rings apart. There have been several 
modifications and extensions to Eades’ force model most 
notably by Fruchterman & Rengold [4], Yifan Hu [5], whose 
work uses that of Fruchterman & Reingold, and Kamada & 
Kawai [6]. Fruchterman & Reingold use Hooke’s law to 
model the spring forces and apply repulsion between all pairs 
of vertices where as attraction is only applied between 
neighbours leaving us with an overall time complexity of 
O(|V|2 + |E|) per iteration. They have also used a simulated 
annealing optimization technique from Davidson & Harel [7]. 
Hu [4] proposed several modifications to Fruchterman & 
Reingold’s algorithm which lead to layouts of better quality 
and improve the computational efficiency significantly by 
reducing repulsion calculations to O(|V|log|V|) per iteration 
through the use of a QuadTree/OcTree spatial decomposition 
data structure. Kamada & Kawai [6] on the other hand require 
that the graph theoretical distance between all pairs of vertices 
is computed and forces along with the energy model are based 
on this distance. The overall computational complexity of 
Kamada & Kawai’s algorithm is O(|V|.|E|) per iteration and an 
O(|V|2) memory complexity. 

A big part of drawing a graph for use in software 
visualization is overlap removal. In order for information to 
be visually comprehensive the graph drawing should not be 
cluttered and overlaps between vertex bounding regions 
should be avoided. There are two ways to remove overlaps in 
a force-directed algorithm. The first one is to modify the force 
model to rapidly repulse vertices whose bounding regions are 
overlapping and thus produce a layout without overlaps. Such 
a method has been suggested by Li, Eades and Nikolov [8]. 
Gansner and Hu [9] suggest a second way, in which a post-
processing step is used after the layout algorithm has finished, 
computing and altering the final drawing so that overlaps are 
avoided.  
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In addition to vertex overlap removal, edge bundling 
algorithms are used to reduce clutter and thus achieve a more 
visually comprehensive drawing. Edge bundling algorithms 
group edges with similar paths into bundles improving overall 

885 



visibility in the drawing by making multiple edges look like a 
single one – a bundle. An algorithm for edge bundling is 
suggested by Danny Holten and Jarke J. van Wijk [10]. 

This paper focuses on drawing undirected straight-line edge 
graphs using iterative force-directed methods combined with 
non-iterative ones,based on the research in [4] and [5]. The 
idea of pinning weights is adopted to support dynamicity. The 
algorithm introduces semantic clustering and an optimization 
of per iteration computational cost of the layout, making it 
more suitable for use in software visualization. The post-
processing overlap removal based on a proximity stress model 
([8]) is used to ensure the preservation of the mental map after 
each removal step. The suggested algorithm can also be 
applied for three-dimensional visualization. 

III. AESTHETIC GOALS 

Several drawing constraints must be chosen for the 
algorithm in order to achieve good layout quality for software 
visualization and comprehension. After reviewing and 
experimenting with different layouts the following aesthetic 
criteria [11] are settled on: 

 Semantic clustering of vertices – due to the 
hierarchic nature of a software system the graph is 
recursively divided into clusters such that all vertices 
with the same parent belong in the same cluster. This 
allows for easy identification of software 
components based on their position in the graph. 

 Dynamicity – the overall structure of the graph does 
not change with each consecutive drawing. Different 
revisions of a software system can be drawn 
consecutively while preserving the user’s mental 
map. 

 Overlap removal – all overlaps between vertex 
bounding regions should be removed by scaling the 
entire drawing so that the initial graph structure is 
fully preserved. 

 Edge bundling – edges sharing similar paths should 
be grouped together into bundles. 

IV. LAYOUT ALGORITHM 

A. Initial Positioning 

In order to begin the layout process initial positions must be 
set for all vertices. This is currently done by assigning random 
coordinates within a rectangle whose width and height are 
equal to the sum of all vertices’ widths and heights. In 3D, an 
analogous operation is performed with a rectangular cuboid. If 
a previous layout has been executed, all vertices that have 
already been positioned by it keep their coordinates and only 
the non-positioned vertices’ coordinates are randomized.  

 
 

B.Clustering 

 

Fig.1.A circular cluster with its smallest enclosing circle 
 
Before the force-directed iterative process can begin all 

vertices are ordered in circles/spheres around their respective 
parents, forming clusters.The smallest enclosing circle 
[12]/sphere [13] is calculated for each cluster (Fig.1). Each 
vertex, regardless of shape, is assigned an enclosing 
circle/sphere. The algorithm used to position the vertices in a 
circle is based on a simple subdivision of the circle into 
equally sized sectors. All child vertices are sorted by their 
radius in ascending order and divided into groups by certain 
criteria. For example, for object-oriented languages the access 
modifier type (private, protected, public) is a good choice. 
The algorithm is applied to each group. At first as many 
vertices as there is room for are positioned on a circle with the 
smallest possible radius so that there are no overlaps. After the 
initial vertices are positioned the radius is increased and part 
of the remaining vertices is positioned again. The process 
continues until all vertices from this group are properly 
ordered and then moves on to the next group. As a result, an 
even distribution of vertices on concentric circles around their 
parent as well as a clear separation of children by access type 
is achieved (Fig. 2). In three dimensions the process is 
analogous with circles replaced by spheres. A modification of 
Saff and Kuijlaars [14] algorithm is used for distributing 
points on a sphere using a golden section spiral. The ordering 
step is applied once at the beginning and once at the end of the 
layout process to initially calculate bounding circles for all 
vertices/clusters and to move child vertices to their final 
positions respectively. 

 

 

Fig.2. Methods in concentric circles around their parent class. Each 
method is positioned in a circle with radius based on its access 

modifier type (private, protected, public) 
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C. Dynamicity 

In order to support dynamicity in the suggested layout 
pinning weights are assigned to all clusters in the following 
way: 

 If the cluster’s parent vertex is new (not existing in a 
previous layout) or has been removed (not existing in 
the current layout), the cluster’s pinning weight is set 
to 1 allowing its free movement. 

 If the cluster’s parent vertex has received coordinates 
from the previous layout and has persisted, its 
pinning weight is set to 0 prohibiting further 
movement. 

The assignment of pinning weights in that manner leads to 
the preservation of the mental map between consecutive 
drawings. 

D. Force-directed iterative process 

Since child vertices will be recursivelylocated around 
parent ones, only top-level vertices need to be positioned 
initially (i.e. ones without parents themselves). Therefore, the 
force-directed iterative layout is applied only for the top-level 
clusters reducing the overall complexity of the algorithm 
based on their number. In software systems with many top-
level clusters the speed up will not be substantial but still 
significant enough. Before beginning the iterative process all 
edges between top-level clusters are counted and the result is 
stored for each pair. The Fruchterman & Reingold force 
model is used as modified by Hu in [4] combined with the 
adaptive step length optimization for simulated annealing. The 
following actions are performed in each iteration: 
1. For each top-level cluster the QuadTree/OcTree is 

recursively opened. 
2. Repulsive forces are calculated between the current top-

level cluster and clusters contained within tree nodes 
“close enough” to it. If the tree node is “far” from the 
current cluster, repulsion is applied based on the distance 
between the two. The criteria for “close enough” and 
“far” are the same as defined in [4] except for the case 
when there is an overlap in the bounding areas of the 
current cluster and tree node. If such an overlap exists the 
tree node is considered “close enough” regardless of the 
other criteria. Repulsive displacements are stored for each 
cluster’s parent vertex based on the forces calculated.  

3. Attractive forces are calculated between each pair of 
clusters with a positive calculated edge count. The power 
of the attractive force is based on the number of edges 
between the two clusters. Attractive displacements are 
stored for each cluster’s parent vertex based on the 
calculated force. 

4. Movements are performed for each vertex based on its 
stored displacements. Each movement is limited by the 
pinning weight of a vertex and by the current temperature 

of the layout used in the simulated annealing 
optimization. The coordinates for the centres of each 
bounding circle of top-level clusters are updated with the 
vector between the cluster’s parent vertex previous and 
new positions. 

5. An adaptive cooling step is executed which reduces or 
increases the current layout temperature. 

E. Post-processing 

The iterative process ends when a convergence criterion is 
satisfied or a maximum number of iterations are exceeded. 
The layout process finishes after an overlap removal post-
processing step and an edge bundling step are performed. 
Snapshot of the edge bundling effect is shown in Fig. 3.  A 
full layout of a software system is depicted in Fig. 4.Pseudo 
code for the entire layout process in 2D is given in Code. 1 
and Code. 2.  

 

 
 

layoutGraph(Graph):  
totalWidth = sum(Graph.Node.width) 
totalHeight = sum(Graph.Node.height) 
foreachNodeinGraph do 

Node.X = random()*totalWidth 
Node.Y = random()*totalHeight 

Clusters = buildClusters() 
foreachClusterinClusters do 

calculateBoundingCircle(Cluster) 
positionChildren(Cluster) 

setPinningWeights() 
while not converged and currentIteration< 
MAX_ITERATIONSdo 

calculateDisplacements() 
performMovements() 
cool() 
currentIteration++ 

foreachClusterinClusters do 
positionChildren(Cluster) 

removeOverlaps() 
bundleEdges() 
cool(T): 
reduce or increase the current layout temperature. 

Code.1. Pseudo code for the layout process and cooling function 

V. RESULTS 

With the circular/spherical arrangement of vertices into 
clusters and having to only run the force-directed 
algorithm on top-level ones, the time complexity of each 
iteration is O(|T|log|T| + |TE|) where T is the set of top-
level vertices and TE is the set of edges between them. 
The arrangement step takes O(|V|) time to complete. The 
most computationally expensive part of the layout is the 
force-directed step. Usually in most graphs of software 
systems the ratio |T|/|V| is quite small due to the low 
number of top-level vertices which results in a lower 
complexity per iteration and reduces the computational 
time of the layout significantly.  
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Code.2.Pseudo code for calculating displacements and moving 
vertices based on them 

 

 

Fig.3. Edge bundling effects on edges – edges sharing a 
common path are grouped. 

 

Fig.4. An overview of the Pygmy project graph (http://pygmy-
httpd.sourceforge.net) laid out using this algorithm showing the 

effects of edge bundling and node clustering. 

VI. CONCLUSIONS AND FUTURE WORK 

Drawing graphs of software systems to ease program 
comprehension is an open problem without a definitive 

solution. An algorithm suited especially for the purpose of 
drawing such graphs in an efficient, useful and aesthetically 
pleasing manner is suggested and described in the paper.  

calculateDisplacements(Graph, QuadTree): 
foreachNode in Graph do 

Q = QuadTree.ROOT 
while not empty(Q) do 

TreeNode = dequeue(Q) 
if far(Node,TreeNode) then 

calculate repulsive displacements between Node 
and TreeNode’s centre of gravity 

else if leaf(TreeNode) then 
foreachContainedNodein 
containedNodes(TreeNode) 
 calculate repulsive displacements  between 
Nodeand ContainedNode 

else 
enqueue(TreeNode.Children) 

foreachEdge between Clusters do 
calculate attractive displacements between Edge.From 
and Edge.To based on Edge.Count 

performMovements(): 
foreachClusterinClusters do 

Displ = getDisplacement(Cluster.Parent) 
WPin  = getPinningWeight(Cluster.Parent) 
LT = getLayoutTemperature() 
move(Cluster.Parent, min(Displ,  WPin*LT)) 
move(Cluster.Centre, min(Displ,  WPin*LT)) 

Further investigation and improvement of the algorithm 
will be based on using an alternative metaheuristic instead of 
simulated annealing for solving the force-directed layout 
optimization problem such as genetic algorithm or ant colony 
optimization. Moreover, the presented algorithm could be 
measured against other layout algorithms on certain 
characteristics - performance, aesthetics, etc. 
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