

Dynamic Force-Directed Graph Layout
 for Software Visualization

Ivan Iliev1, Haralambi Haralambiev1, Milena Lazarova2, Stanimir Boychev1

Abstract – Drawing graphs of software systems in a meaningful
way is both computationally and aesthetically problematic. The
paper presents a graph layout that improves the existing
methods making them more suitable for use in the area of
software visualization and comprehension. The suggested graph
layout is an extended graph drawing aimed at better
computational cost and aesthetic results of visualization of
complex software systems.

Keywords – Software visualization, dynamic, graph, layout,
drawing, force-directed.

I. INTRODUCTION

Graphs have many applications in different areas of
computer science. They are used to represent networks of
communication, data organization, computational devices and
flow, as well as many others. Two of the main objectives of
software visualization are to ease the process of understanding
an unfamiliar software system and to allow visual
identification of anomalies within the software structure and
its evolution [1]. The nature of graphs as an abstract model
lends itself to software visualization through being able to
show multiple objects and relations as vertexes and edges of a
graph.

There are two general types of graph layouts algorithms -
static and dynamic. The static methods address the problem of
constructing a one-time graph drawing. Dynamic methods are
concerned with preserving the user’s mental map so that
different drawings maintain the overall structure of the graph
and only reflect individual changes. In order to support
visualization of the evolution ofsoftware systems, the obvious
choice are dynamic algorithms because they preserve the
mental map.

II. RELATED WORK

Frishman and Tal [2] focus on the dynamicity of a layout
by using pinning weights. These weights are assigned to
vertices between consecutive layouts based on their distance
to modification. Dynamicity, however, is only a part of the
graph drawing problem. The most popular solutions for

drawing graphs are force-directed ones.
Force-directed methods model the vertices as physical

bodies with different forces between them. These kinds of
algorithms are based on the effect of such forces acting on an
initial graph for a fixed number of iterations or until an energy
function is minimized. There are two parts of a force-directed
layout – a force model and a technique for finding minimum
energy configurations.

One of the earliest force models for graph drawing was
proposed by Eades [3] and is widely used today. Eades’ model
is based on the mechanical model which presents graph
vertices as rings and graph edges as springs connecting the
vertices. When too far the springs apply attraction to the rings
bringing them closer together and when too close repulsion is
exerted pushing the rings apart. There have been several
modifications and extensions to Eades’ force model most
notably by Fruchterman & Rengold [4], Yifan Hu [5], whose
work uses that of Fruchterman & Reingold, and Kamada &
Kawai [6]. Fruchterman & Reingold use Hooke’s law to
model the spring forces and apply repulsion between all pairs
of vertices where as attraction is only applied between
neighbours leaving us with an overall time complexity of
O(|V|2 + |E|) per iteration. They have also used a simulated
annealing optimization technique from Davidson & Harel [7].
Hu [4] proposed several modifications to Fruchterman &
Reingold’s algorithm which lead to layouts of better quality
and improve the computational efficiency significantly by
reducing repulsion calculations to O(|V|log|V|) per iteration
through the use of a QuadTree/OcTree spatial decomposition
data structure. Kamada & Kawai [6] on the other hand require
that the graph theoretical distance between all pairs of vertices
is computed and forces along with the energy model are based
on this distance. The overall computational complexity of
Kamada & Kawai’s algorithm is O(|V|.|E|) per iteration and an
O(|V|2) memory complexity.

A big part of drawing a graph for use in software
visualization is overlap removal. In order for information to
be visually comprehensive the graph drawing should not be
cluttered and overlaps between vertex bounding regions
should be avoided. There are two ways to remove overlaps in
a force-directed algorithm. The first one is to modify the force
model to rapidly repulse vertices whose bounding regions are
overlapping and thus produce a layout without overlaps. Such
a method has been suggested by Li, Eades and Nikolov [8].
Gansner and Hu [9] suggest a second way, in which a post-
processing step is used after the layout algorithm has finished,
computing and altering the final drawing so that overlaps are
avoided.

1Ivan Iliev, Haralambi Haralambiev and Stanimir Boychev are
with the Applied Research and Development Center at Musala Soft,
36 Dragan Tsankov blvd, 1057 Sofia, Bulgaria
E-mails:
{ivan.iliev,haralambi.haralambiev,stanimir.boychev}@musala.com

2Milena Lazarova is with theComputer Systems Department at
Technical University of Sofia, 8 Kliment Ohridski blvd, 1756 Sofia,
Bulgaria, E-mail: milaz@tu-sofia.bg

In addition to vertex overlap removal, edge bundling
algorithms are used to reduce clutter and thus achieve a more
visually comprehensive drawing. Edge bundling algorithms
group edges with similar paths into bundles improving overall

885

visibility in the drawing by making multiple edges look like a
single one – a bundle. An algorithm for edge bundling is
suggested by Danny Holten and Jarke J. van Wijk [10].

This paper focuses on drawing undirected straight-line edge
graphs using iterative force-directed methods combined with
non-iterative ones,based on the research in [4] and [5]. The
idea of pinning weights is adopted to support dynamicity. The
algorithm introduces semantic clustering and an optimization
of per iteration computational cost of the layout, making it
more suitable for use in software visualization. The post-
processing overlap removal based on a proximity stress model
([8]) is used to ensure the preservation of the mental map after
each removal step. The suggested algorithm can also be
applied for three-dimensional visualization.

III. AESTHETIC GOALS

Several drawing constraints must be chosen for the
algorithm in order to achieve good layout quality for software
visualization and comprehension. After reviewing and
experimenting with different layouts the following aesthetic
criteria [11] are settled on:

 Semantic clustering of vertices – due to the
hierarchic nature of a software system the graph is
recursively divided into clusters such that all vertices
with the same parent belong in the same cluster. This
allows for easy identification of software
components based on their position in the graph.

 Dynamicity – the overall structure of the graph does
not change with each consecutive drawing. Different
revisions of a software system can be drawn
consecutively while preserving the user’s mental
map.

 Overlap removal – all overlaps between vertex
bounding regions should be removed by scaling the
entire drawing so that the initial graph structure is
fully preserved.

 Edge bundling – edges sharing similar paths should
be grouped together into bundles.

IV. LAYOUT ALGORITHM

A. Initial Positioning

In order to begin the layout process initial positions must be
set for all vertices. This is currently done by assigning random
coordinates within a rectangle whose width and height are
equal to the sum of all vertices’ widths and heights. In 3D, an
analogous operation is performed with a rectangular cuboid. If
a previous layout has been executed, all vertices that have
already been positioned by it keep their coordinates and only
the non-positioned vertices’ coordinates are randomized.

B.Clustering

Fig.1.A circular cluster with its smallest enclosing circle

Before the force-directed iterative process can begin all

vertices are ordered in circles/spheres around their respective
parents, forming clusters.The smallest enclosing circle
[12]/sphere [13] is calculated for each cluster (Fig.1). Each
vertex, regardless of shape, is assigned an enclosing
circle/sphere. The algorithm used to position the vertices in a
circle is based on a simple subdivision of the circle into
equally sized sectors. All child vertices are sorted by their
radius in ascending order and divided into groups by certain
criteria. For example, for object-oriented languages the access
modifier type (private, protected, public) is a good choice.
The algorithm is applied to each group. At first as many
vertices as there is room for are positioned on a circle with the
smallest possible radius so that there are no overlaps. After the
initial vertices are positioned the radius is increased and part
of the remaining vertices is positioned again. The process
continues until all vertices from this group are properly
ordered and then moves on to the next group. As a result, an
even distribution of vertices on concentric circles around their
parent as well as a clear separation of children by access type
is achieved (Fig. 2). In three dimensions the process is
analogous with circles replaced by spheres. A modification of
Saff and Kuijlaars [14] algorithm is used for distributing
points on a sphere using a golden section spiral. The ordering
step is applied once at the beginning and once at the end of the
layout process to initially calculate bounding circles for all
vertices/clusters and to move child vertices to their final
positions respectively.

Fig.2. Methods in concentric circles around their parent class. Each
method is positioned in a circle with radius based on its access

modifier type (private, protected, public)

886

C. Dynamicity

In order to support dynamicity in the suggested layout
pinning weights are assigned to all clusters in the following
way:

 If the cluster’s parent vertex is new (not existing in a
previous layout) or has been removed (not existing in
the current layout), the cluster’s pinning weight is set
to 1 allowing its free movement.

 If the cluster’s parent vertex has received coordinates
from the previous layout and has persisted, its
pinning weight is set to 0 prohibiting further
movement.

The assignment of pinning weights in that manner leads to
the preservation of the mental map between consecutive
drawings.

D. Force-directed iterative process

Since child vertices will be recursivelylocated around
parent ones, only top-level vertices need to be positioned
initially (i.e. ones without parents themselves). Therefore, the
force-directed iterative layout is applied only for the top-level
clusters reducing the overall complexity of the algorithm
based on their number. In software systems with many top-
level clusters the speed up will not be substantial but still
significant enough. Before beginning the iterative process all
edges between top-level clusters are counted and the result is
stored for each pair. The Fruchterman & Reingold force
model is used as modified by Hu in [4] combined with the
adaptive step length optimization for simulated annealing. The
following actions are performed in each iteration:
1. For each top-level cluster the QuadTree/OcTree is

recursively opened.
2. Repulsive forces are calculated between the current top-

level cluster and clusters contained within tree nodes
“close enough” to it. If the tree node is “far” from the
current cluster, repulsion is applied based on the distance
between the two. The criteria for “close enough” and
“far” are the same as defined in [4] except for the case
when there is an overlap in the bounding areas of the
current cluster and tree node. If such an overlap exists the
tree node is considered “close enough” regardless of the
other criteria. Repulsive displacements are stored for each
cluster’s parent vertex based on the forces calculated.

3. Attractive forces are calculated between each pair of
clusters with a positive calculated edge count. The power
of the attractive force is based on the number of edges
between the two clusters. Attractive displacements are
stored for each cluster’s parent vertex based on the
calculated force.

4. Movements are performed for each vertex based on its
stored displacements. Each movement is limited by the
pinning weight of a vertex and by the current temperature

of the layout used in the simulated annealing
optimization. The coordinates for the centres of each
bounding circle of top-level clusters are updated with the
vector between the cluster’s parent vertex previous and
new positions.

5. An adaptive cooling step is executed which reduces or
increases the current layout temperature.

E. Post-processing

The iterative process ends when a convergence criterion is
satisfied or a maximum number of iterations are exceeded.
The layout process finishes after an overlap removal post-
processing step and an edge bundling step are performed.
Snapshot of the edge bundling effect is shown in Fig. 3. A
full layout of a software system is depicted in Fig. 4.Pseudo
code for the entire layout process in 2D is given in Code. 1
and Code. 2.

layoutGraph(Graph):
totalWidth = sum(Graph.Node.width)
totalHeight = sum(Graph.Node.height)
foreachNodeinGraph do

Node.X = random()*totalWidth
Node.Y = random()*totalHeight

Clusters = buildClusters()
foreachClusterinClusters do

calculateBoundingCircle(Cluster)
positionChildren(Cluster)

setPinningWeights()
while not converged and currentIteration<
MAX_ITERATIONSdo

calculateDisplacements()
performMovements()
cool()
currentIteration++

foreachClusterinClusters do
positionChildren(Cluster)

removeOverlaps()
bundleEdges()
cool(T):
reduce or increase the current layout temperature.

Code.1. Pseudo code for the layout process and cooling function

V. RESULTS

With the circular/spherical arrangement of vertices into
clusters and having to only run the force-directed
algorithm on top-level ones, the time complexity of each
iteration is O(|T|log|T| + |TE|) where T is the set of top-
level vertices and TE is the set of edges between them.
The arrangement step takes O(|V|) time to complete. The
most computationally expensive part of the layout is the
force-directed step. Usually in most graphs of software
systems the ratio |T|/|V| is quite small due to the low
number of top-level vertices which results in a lower
complexity per iteration and reduces the computational
time of the layout significantly.

887

888

Code.2.Pseudo code for calculating displacements and moving
vertices based on them

Fig.3. Edge bundling effects on edges – edges sharing a
common path are grouped.

Fig.4. An overview of the Pygmy project graph (http://pygmy-
httpd.sourceforge.net) laid out using this algorithm showing the

effects of edge bundling and node clustering.

VI. CONCLUSIONS AND FUTURE WORK

Drawing graphs of software systems to ease program
comprehension is an open problem without a definitive

solution. An algorithm suited especially for the purpose of
drawing such graphs in an efficient, useful and aesthetically
pleasing manner is suggested and described in the paper.

calculateDisplacements(Graph, QuadTree):
foreachNode in Graph do

Q = QuadTree.ROOT
while not empty(Q) do

TreeNode = dequeue(Q)
if far(Node,TreeNode) then

calculate repulsive displacements between Node
and TreeNode’s centre of gravity

else if leaf(TreeNode) then
foreachContainedNodein
containedNodes(TreeNode)
 calculate repulsive displacements between
Nodeand ContainedNode

else
enqueue(TreeNode.Children)

foreachEdge between Clusters do
calculate attractive displacements between Edge.From
and Edge.To based on Edge.Count

performMovements():
foreachClusterinClusters do

Displ = getDisplacement(Cluster.Parent)
WPin = getPinningWeight(Cluster.Parent)
LT = getLayoutTemperature()
move(Cluster.Parent, min(Displ, WPin*LT))
move(Cluster.Centre, min(Displ, WPin*LT))

Further investigation and improvement of the algorithm
will be based on using an alternative metaheuristic instead of
simulated annealing for solving the force-directed layout
optimization problem such as genetic algorithm or ant colony
optimization. Moreover, the presented algorithm could be
measured against other layout algorithms on certain
characteristics - performance, aesthetics, etc.

ACKNOWLEDGEMENT

This work was partially supported by the Bulgarian
National Science Research Fund through contract ДМУ 02/18
- 2009.

REFERENCES

[1] S. Diehl, "Software Visualization - Visualizing the Structure,
Behaviour, and Evolution of Software", Springer, 2007.

[2] Y. Frishman, A. Tal, “Online Dynamic Graph Drawing”, Proc.
Eurographics/IEEE VGTC Symp. Visualization (EuroVis '07),
pp. 75-82, 2007.

[3] P. Eades, "A Heuristic for Graph Drawing", Congressus
Numerantium, vol. 42, pp. 149-160, 1984.

[4] T. Fruchterman, E. M. Reingold, “Graph Drawing by Force-
Directed Placement”, Software Practice and Experience, vol. 21,
pp. 1129-1164, 1991.

[5] Y. F. Hu, “Efficient and High Quality Force-Directed Graph
Drawing”, The Mathematica Journal, vol. 10, pp. 37-71, 2005

[6] T. Kamada, S. Kawai, “An Algorithm for Drawing General
Undirected Graphs”, Information Processing Letters, vol. 31,
pp. 7-15, 1989.

[7] R. Davidson, D. Harel, “Drawing Graphs Nicely Using
Simulated Annealing”, ACM Trans. Graph., vol. 15, iss. 4, pp.
301-331, 1996.

[8] W. Li., P. Eades, N, Nikolov, “Using Spring Algorithms to
Remove Node Overlapping”, Proc. of the 2005 Asia-Pacific
Symposium on Information Visualisation, Vol.45 (APVis '05),
pp. 131-140, 2005.

[9] E. Gansner, Y. Hu, “Efficient Node Overlap Removal Using a
Proximity Stress Model”, In Graph Drawing, Ioannis G. Tollis
and Maurizio Patrignani (Eds.). Lecture Notes in Computer
Science, Vol. 5417. Springer-Verlag, Berlin, Heidelberg, pp.
206-217, 2009.

[10] D. Holten, J, van Wijk, "Force-Directed Edge Bundling for
Graph Visualization", Proc. of 11th Eurographics/IEEE-VGTC
Symposium on Visualization (Computer Graphics Forum;
Proceedings of EuroVis 2009), pp. 983 - 990, 2009

[11] G. Battista, P. Eades, R. Tamassia, I.G. Tollis, "Graph Drawing
- Algorithms for the Visualization of Graphs", Prentice, 1999.

[12] F. Nielsen, R. Nock, "Approximating Smallest Enclosing
Disks", Proc. of 16th Canadian Conference on Computational
Geometry (CCCG), pp. 124–127, 2004.

[13] F. Nielsen, R. Nock, "Approximating Smallest Enclosing
Balls", Proc. of International Conference on Computational
Science and Its Applications (ICCSA)", Springer, Lecture Notes
in Computer Science, vol. 3045, pp. 147-157, 2004.

[14] E. Saff, A. Kuijlaars, “Distributing Many Points on a Sphere”,
The Mathematical Intelligencer, Vol. 19, No. 1, pp. 5-11, 1997.

http://pygmy-httpd.sourceforge.net/
http://pygmy-httpd.sourceforge.net/

