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Abstract – This paper demonstrates three different 
applications: Minimax algorithm, Alpha Beta pruning algorithm 
and Genetic Algorithm in games. They are used to evolve a Tic 
Tac Toe and Chess games. The size of strategies space is defined 
by the number of all possible game situations, which follows from 
the question of how many distinct matches can be played. The 
using of GA implementation improves the optimal paths and 
decreases the playing time. 
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I. INTRODUCTION 

The Minimax decision rule is applied as a solution to two-
player zero-sum games and in those cases is equal to the Nash 
equilibrium. Since in these types of games both players work 
towards the same mutual goal and one player’s moves towards 
winning directly affect the chances of winning for the other 
player in a negative manner.Тhe Minimax theory is based on 
maximizing the potential gain for one player while 
minimizing it for his opponent (and vice versa).An algorithm 
exists in computer science which implements the Minimax 
decision rule and is normally used for simple two-player zero-
sum games (e.g. Tic-tac-toe). It can also be applied to more 
complex games such as Chess and Go but without additional 
optimization it is highly inappropriate. 

II. MINIMAX IN GENERAL 

`The Minimax algorithm [2] works by scanning the nodes 
(and all of its children) of a game tree from a given 
configuration and evaluates them based on the Minimax 
theory. The algorithm is in fact a form of depth-first search 
and on a programme level is normally implemented as a 
recursive algorithm. Two basic strategies exist for the 
Minimax algorithm: the first one consists of searching every 
children of every node of the whole tree and the second limits 
the depth of the search in order to save computational time. 
Both strategies have their pros and cons. The first provides a 
highly unlikely chance for a mistake but demands more time 

and is virtually impossible to implement in complex games. 
The second can greatly limit the computational time but does 
by creating the so-called “horizon effect”, i.e. limiting the 
number of children nodes the computer can search ahead, this 
can lead to the choice of a move that might later prove to be 
bad (but the computer could not have predicted it). However, 
there are some methods that optimize the Minimax algorithm, 
the most popular of which is the alpha-beta pruning, which 
minimizes the time necessary for the machine to complete the 
task while at the same time allowing more depth for the 
search. 

Fig. 1. The Basic Principal of Minimax Algorithm 
 
 
Fig. 1 demonstrates the basic principal of the Minimax 

algorithm. Following the Minimax theory, the program will 
attempt to maximize one’s player score while minimizing the 
others. The best move is the one that brings the most benefit 
to the maximizing player and the least to his opponent. Since 
two-player zero-sum games have a shifting nature, meaning 
that as the first player tries to maximize his own score in the 
first move, the second will try to minimize the first player’s 
score in his own turn, the algorithm changes its action with 
every move. As in the figure, in level 1 the program is 
maximizing, while in level 2 – minimizing, hence the name 
“Minimax”. In games, the algorithm works by analysing a 
given board configuration (in this case, that would be the node 
of level 0). The computer needs to choose the best move so it 
analyses all possible moves (the nodes of the game tree) to 
distinguish the one that brings the most benefit. Because the 
algorithm is maximizing in level 1, the most beneficial move 
would be the highest rated one. In order to rate the nodes (and, 
consequently, the moves themselves), the computer must 
search through all the children of the nodes. In a situation of a 
board game, for example Tic-tac-toe, this means the machine 
needs to recreate all the possible outcomes of a given 
configuration, i.e. play until a finished game, so that the said 
configuration can be evaluated. 
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III. IMPLEMENTATION IN GAMES (TIC TAC TOE 

AND CHESS) 

A. Minimax Algorithm 

Tic-tac-toe is a classic example of game which can be 
played by a computer using the Minimax algorithm. In this 
case, Minimax is an ideal solution because the branching 
factor of the game is only 9, as opposed to more complex 
games such as Chess, which has a branching factor of 35. The 
algorithm will work in absolutely the same way as in its 
general form [3].  

 

Fig. 2. Sample Tic Tac Toe Game Tree 

 
 

Fig. 2 represents a sample Tic-tac-toe game tree. It is very 
similar to the tree in Fig. 1. This demonstrates that the 
Minimax theory and algorithm remain largely unchanged in 
their different uses. 

 
 
 

Fig. 3. Pseudo code of the Minimax algorithm 
 

Figure 3 shows the pseudo code implementation of the 
Minimax algorithm in Tic-tac-toe. 

In the case of a game, what the algorithm does is recreate 
all the possible plies stemming from a configuration. The 
programme takes into consideration the opponent’s best 
moves and the first player’s best counter-attacks. This logic 
explains the Minimax algorithm and leads to the best moves 
for each player’s turns. The most negative feature of this 
algorithm is that it requires great computational time in more 
complex games if it runs in full depth. Should the depth be 
limited, this will result in possible mistakes. This is the reason 
why an optimization is needed for a more efficient operation 
of the Minimax algorithm.  

B. Alpha Beta pruning algorithm 

The desired improvement turned out to be the Alpha-beta 
pruning algorithm. Alpha-beta pruning is a search algorithm 
that relies on the Minimax theorem but brings new light to the 
implementation of the theorem by minimizing the game tree 
[2]. The algorithm returns the same result as pure Minimax 
but in the best case it does it twice as fast. It literally prunes or 
cuts off some nodes that cannot lead to a better overall result 
(they are suboptimal). While simple Minimax will explore all 
possible nodes alpha-beta explores only those which seem to 
be better than the best move till now. This is a huge advantage 
when it comes to exploring game with big branching factors 
such as Chess. Chess has a big branching factor ≈ 35 
compared to 9 in simple games like Tic-tac-toe. Using brute-
force-like algorithms such as simple Minimax lead to search 
explosion in such conditions. This makes the application of 
simple Minimax rule in games like Chess not impossible but 
unprofitable as it requires immense computational power.  

 

TABLE I 
WORST AND BEST SCENARIO 

Depth Worst scenario Best scenario 

n bn bn/2+bn/2-1 
1 20 20 
2 400 39 
3 8 000 178 
4 160 000 399 
5 3 200 000 3576 
6 64 000 000 15 999 
7 1 280 000 000 71 553 
8 25 600 000 000 319 999 

9 512 000 000 000 715 540 

10 10 240 000 000 000 6 399 999 

 
 
TableI shows how much we can benefit from alpha-beta 

pruning in cases of big branching factor and good move-
ordering. It shows the number of child nodes with depth n and 
branching factor b=20. Table1 is divided in two categories: 
worst scenario and best scenario. Here it should be mentioned 

Minimax_algorithm(player,board) 
    if(game over in current board position) 
        return player(the winner) 
    child nodes = all legal moves for player from this board 
    if(max's turn) 
        return maximal score of calling Minimax on all the 
children 
    else (min's turn) 
        return minimal score of calling Minimax on all the 
children 
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that the alpha-beta algorithm highly depends on the move-
ordering. Hence, for the minimizing player, sorting succesor’s 
utility in an increasingorder is better. For the maximizing 
player, sorting successor’s utility in a decreasing order is 
better. The maximal number of leaves is bn.  In this worst case 
the program has to explore all the nodes in order to find the 
best one. After the best move has been found there are now 
nodes left to be pruned. This means that no pruning will be 
made, which proves to be the same as pure Minimax 
searching. However, if the move-ordering is good (best case) 
the number of leaves plummets as TableI shows. Slagle and 
Dixon first showed that the number of leaves visited by the 
alpha-beta search in this “best case” must be at least: 
bn/2+bn/2-1. Since the best move has been found first there is 
no point in exploring all the remaining nodes. D. McIllro then 
proved that alpha-beta search for a random-generated game 
will be 33% faster than pure Minimax. That is why move-
ordering is the focus of a lot of effort when writing an 
efficient program.  

The algorithm calculates and keeps track of two variables: 
alpha and beta, one for each player. Alpha represents the 
value of the best possible move the current player has made so 
far. Beta, on the contrary, represents the value of the best 
possible move the opponent has made so far. 

Figure 5 gives a clearer picture of how the algorithm 
actually operates: 

 
 

№ Line 

 
1. 
2. 
3. 
4. 
5. 
6. 
7. 
8. 
9. 
10. 
11. 
12. 
13. 
14. 
15. 
16. 
17. 
18. 
19. 
20. 

 
AlphaBeta(player, α, β,depth) 
If(depth==0) return  heuristic_evaluation();  
If(Maximizing player) 
{ 
For each following child node 
Node_score= AlphaBeta(minplayer, α, β,child); 
If (node_score> α) α =node_score ; // A better move has 
been found  
If(α>= β)  
return alpha;//Cut off 
} 
Else If(Minimizing player) 
{ 
For each following child node 
Node_score= AlphaBeta(max player, α, β,child); 
If(node_score<beta) β =node_score; // A better move 
has been found  
If(α>= β) 
return beta;// Cut off 
} 
 

 

Fig. 5. Pseudo code Alpha-Beta pruning algorithm 
 
 
 

C. A Genetic Minimax Algorithm 

A Genetic Algorithm (GA) is most effective in situations, 
for which a well defined problem offers а compact encoding 
of all necessary solution parameters [1]. If this encoding 
grows two large and complex, the algorithm faces similar 
limitations of other local search methods and cannot be 
expected to find a global optimum. In considering the Tic Tac 
Toe strategy problem it is at first important to find a suitable 
representation and to ensure that a GA can be effectively 
applied. 

The encoding of chromosome depends on game problem. 
The Fig. 4 presents Tic Tac Toe game tree encoding. Each 
gene is defined by the correspond move to be taken. The 
chromosome is a table with 827 genes to represent each game 
situation. 

Fitness function is important to create an efficient GA and 
it is formed as way: 

f(n)=possible win configurations for current player – 
possible win configurations for opponent player. 

 
 
 

 

Fig. 4. Game tree encoding scheme 
 
Based on its performance, each individual is assigned a 

fitness measure. The higher its measure, the more likely it is 
that an chromosome will take part in crossover and will be 
passed to the next generation. The parents can be choosed 
applying the genetic operator selection. 

Once the parents are determined, the offspring is created by 
one-point crossover [Fig. 6]. The genes are copied from first 
parent at point of node 3 and the genes continue to be copied 
from the other parent. The crossover probability pc is around 
0,90. 

The mutation [Fig. 7.] can occur at each gene of 
chromosome with probability pm by a new random validate 
value is chosen to replace the current one. The pm is very low 
value (less than 0,009) since it is evaluated for each gene 
independently. The essential goal of genetic operators is to 
ensure general variety in the reproductive process over time. 

The size of population is 50 and the number of generations 
is 50. 

The code for the implementation of Tic Tac Toe GA is a 
C++-based programming framework for GAs. Some 
modifications are made to accommodate the chromosome and 
the fitness function for the specific encoding and game tree 
solution. 
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IV. EXPERIMENTS AND RESULTS Comparison between different methods in Tic‐tac‐toe
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Each of those algorithms has experimented and Fig.8and 
Fig. 9give the results.  

 

 

Fig. 8. Comparison between different methods in Tic Tac Toe 

 

Comparison between different methods in Chess
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Fig. 6. Genetic operator One-point crossover 
 
 
 Fig. 9. Comparison between different methods in Chess 
 

 

V. CONCLUSION 

We design and implement a variety of techniques for 
solving Tic Tac Toe game and Chess. The GA could be 
applied successfully to evolve these game strategies. 

The optimal result of genetic algorithm for different games 
is not guaranteed because it depends on the length of the 
chromosome and the depth of the tree decision. 

Further testing would serve for running GA with different 
population parameters. In order to improve the fitness 
function, it can change the weights, given to the possible 
moves for each player. The number of paths or considering 
the next shortest path from a given position may make the 
fitness function more optimal heuristic function. It possible 
also to create hybrid algorithm Alpha Beta pruning with GA 
to find a good moves in two players games in a faster way. 

 

Fig. 7. Genetic operator mutation 

 
To illustrate the efficiency of the different methods, the 

following charts are provided. The first chart [Fig. 8.] exhibits 
the relative time needed for the programme to calculate the 
best move for the Tic-tac-toe configuration, depicted in Fig. 9, 
using each of the three methods. The results show that there is 
little difference between the computational time for the three 
algorithms for this task. However, there is a sharp distinction 
in the second chart, which demonstrates the necessary time for 
calculating the best 11th move of an ongoing chess game. Our 
results show that the genetic algorithm is the best solution for 
two-player zero-sum games with a high branching factor. 
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