

The Application of Minimax Decision Rule in Games

Milena Karova1, Lyubomir Genchev2, Lyubomir Vasilev3, Ivaylo Penev4

Abstract – This paper demonstrates three different
applications: Minimax algorithm, Alpha Beta pruning algorithm
and Genetic Algorithm in games. They are used to evolve a Tic
Tac Toe and Chess games. The size of strategies space is defined
by the number of all possible game situations, which follows from
the question of how many distinct matches can be played. The
using of GA implementation improves the optimal paths and
decreases the playing time.

Keywords – Minimax strategy, Alpha Beta Pruning, Genetic
Algorithm, Fitness Function, Game Tree Decision.

I. INTRODUCTION

The Minimax decision rule is applied as a solution to two-
player zero-sum games and in those cases is equal to the Nash
equilibrium. Since in these types of games both players work
towards the same mutual goal and one player’s moves towards
winning directly affect the chances of winning for the other
player in a negative manner.Тhe Minimax theory is based on
maximizing the potential gain for one player while
minimizing it for his opponent (and vice versa).An algorithm
exists in computer science which implements the Minimax
decision rule and is normally used for simple two-player zero-
sum games (e.g. Tic-tac-toe). It can also be applied to more
complex games such as Chess and Go but without additional
optimization it is highly inappropriate.

II. MINIMAX IN GENERAL

`The Minimax algorithm [2] works by scanning the nodes
(and all of its children) of a game tree from a given
configuration and evaluates them based on the Minimax
theory. The algorithm is in fact a form of depth-first search
and on a programme level is normally implemented as a
recursive algorithm. Two basic strategies exist for the
Minimax algorithm: the first one consists of searching every
children of every node of the whole tree and the second limits
the depth of the search in order to save computational time.
Both strategies have their pros and cons. The first provides a
highly unlikely chance for a mistake but demands more time

and is virtually impossible to implement in complex games.
The second can greatly limit the computational time but does
by creating the so-called “horizon effect”, i.e. limiting the
number of children nodes the computer can search ahead, this
can lead to the choice of a move that might later prove to be
bad (but the computer could not have predicted it). However,
there are some methods that optimize the Minimax algorithm,
the most popular of which is the alpha-beta pruning, which
minimizes the time necessary for the machine to complete the
task while at the same time allowing more depth for the
search.

Fig. 1. The Basic Principal of Minimax Algorithm

Fig. 1 demonstrates the basic principal of the Minimax

algorithm. Following the Minimax theory, the program will
attempt to maximize one’s player score while minimizing the
others. The best move is the one that brings the most benefit
to the maximizing player and the least to his opponent. Since
two-player zero-sum games have a shifting nature, meaning
that as the first player tries to maximize his own score in the
first move, the second will try to minimize the first player’s
score in his own turn, the algorithm changes its action with
every move. As in the figure, in level 1 the program is
maximizing, while in level 2 – minimizing, hence the name
“Minimax”. In games, the algorithm works by analysing a
given board configuration (in this case, that would be the node
of level 0). The computer needs to choose the best move so it
analyses all possible moves (the nodes of the game tree) to
distinguish the one that brings the most benefit. Because the
algorithm is maximizing in level 1, the most beneficial move
would be the highest rated one. In order to rate the nodes (and,
consequently, the moves themselves), the computer must
search through all the children of the nodes. In a situation of a
board game, for example Tic-tac-toe, this means the machine
needs to recreate all the possible outcomes of a given
configuration, i.e. play until a finished game, so that the said
configuration can be evaluated.

1Milena Karova is with the Department of Computer Science and
Technologie, Technical UniversityVarna, Bulgaria,
E-mail: mkarova@ieee.bg.

2Lyubomir Gencheva student with the High School of
Mathematics,Varna,Bulgaria,E-mail:lubo1993@gmail.com

3Lyubomir Vasilev a student with the Fourth Language School,
Varna, Bulgaria, E-mail: lubodjwow@gmail.com

4Ivaylo Penev is with the Department of Computer Science and
Technologie, Technical University Varna, Bulgaria,
E-mail: ivailopenev@yahoo.com.

889

III. IMPLEMENTATION IN GAMES (TIC TAC TOE

AND CHESS)

A. Minimax Algorithm

Tic-tac-toe is a classic example of game which can be
played by a computer using the Minimax algorithm. In this
case, Minimax is an ideal solution because the branching
factor of the game is only 9, as opposed to more complex
games such as Chess, which has a branching factor of 35. The
algorithm will work in absolutely the same way as in its
general form [3].

Fig. 2. Sample Tic Tac Toe Game Tree

Fig. 2 represents a sample Tic-tac-toe game tree. It is very
similar to the tree in Fig. 1. This demonstrates that the
Minimax theory and algorithm remain largely unchanged in
their different uses.

Fig. 3. Pseudo code of the Minimax algorithm

Figure 3 shows the pseudo code implementation of the
Minimax algorithm in Tic-tac-toe.

In the case of a game, what the algorithm does is recreate
all the possible plies stemming from a configuration. The
programme takes into consideration the opponent’s best
moves and the first player’s best counter-attacks. This logic
explains the Minimax algorithm and leads to the best moves
for each player’s turns. The most negative feature of this
algorithm is that it requires great computational time in more
complex games if it runs in full depth. Should the depth be
limited, this will result in possible mistakes. This is the reason
why an optimization is needed for a more efficient operation
of the Minimax algorithm.

B. Alpha Beta pruning algorithm

The desired improvement turned out to be the Alpha-beta
pruning algorithm. Alpha-beta pruning is a search algorithm
that relies on the Minimax theorem but brings new light to the
implementation of the theorem by minimizing the game tree
[2]. The algorithm returns the same result as pure Minimax
but in the best case it does it twice as fast. It literally prunes or
cuts off some nodes that cannot lead to a better overall result
(they are suboptimal). While simple Minimax will explore all
possible nodes alpha-beta explores only those which seem to
be better than the best move till now. This is a huge advantage
when it comes to exploring game with big branching factors
such as Chess. Chess has a big branching factor ≈ 35
compared to 9 in simple games like Tic-tac-toe. Using brute-
force-like algorithms such as simple Minimax lead to search
explosion in such conditions. This makes the application of
simple Minimax rule in games like Chess not impossible but
unprofitable as it requires immense computational power.

TABLE I
WORST AND BEST SCENARIO

Depth Worst scenario Best scenario

n bn bn/2+bn/2-1
1 20 20
2 400 39
3 8 000 178
4 160 000 399
5 3 200 000 3576
6 64 000 000 15 999
7 1 280 000 000 71 553
8 25 600 000 000 319 999

9 512 000 000 000 715 540

10 10 240 000 000 000 6 399 999

TableI shows how much we can benefit from alpha-beta

pruning in cases of big branching factor and good move-
ordering. It shows the number of child nodes with depth n and
branching factor b=20. Table1 is divided in two categories:
worst scenario and best scenario. Here it should be mentioned

Minimax_algorithm(player,board)
 if(game over in current board position)
 return player(the winner)
 child nodes = all legal moves for player from this board
 if(max's turn)
 return maximal score of calling Minimax on all the
children
 else (min's turn)
 return minimal score of calling Minimax on all the
children

890

that the alpha-beta algorithm highly depends on the move-
ordering. Hence, for the minimizing player, sorting succesor’s
utility in an increasingorder is better. For the maximizing
player, sorting successor’s utility in a decreasing order is
better. The maximal number of leaves is bn. In this worst case
the program has to explore all the nodes in order to find the
best one. After the best move has been found there are now
nodes left to be pruned. This means that no pruning will be
made, which proves to be the same as pure Minimax
searching. However, if the move-ordering is good (best case)
the number of leaves plummets as TableI shows. Slagle and
Dixon first showed that the number of leaves visited by the
alpha-beta search in this “best case” must be at least:
bn/2+bn/2-1. Since the best move has been found first there is
no point in exploring all the remaining nodes. D. McIllro then
proved that alpha-beta search for a random-generated game
will be 33% faster than pure Minimax. That is why move-
ordering is the focus of a lot of effort when writing an
efficient program.

The algorithm calculates and keeps track of two variables:
alpha and beta, one for each player. Alpha represents the
value of the best possible move the current player has made so
far. Beta, on the contrary, represents the value of the best
possible move the opponent has made so far.

Figure 5 gives a clearer picture of how the algorithm
actually operates:

№ Line

1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.

AlphaBeta(player, α, β,depth)
If(depth==0) return heuristic_evaluation();
If(Maximizing player)
{
For each following child node
Node_score= AlphaBeta(minplayer, α, β,child);
If (node_score> α) α =node_score ; // A better move has
been found
If(α>= β)
return alpha;//Cut off
}
Else If(Minimizing player)
{
For each following child node
Node_score= AlphaBeta(max player, α, β,child);
If(node_score<beta) β =node_score; // A better move
has been found
If(α>= β)
return beta;// Cut off
}

Fig. 5. Pseudo code Alpha-Beta pruning algorithm

C. A Genetic Minimax Algorithm

A Genetic Algorithm (GA) is most effective in situations,
for which a well defined problem offers а compact encoding
of all necessary solution parameters [1]. If this encoding
grows two large and complex, the algorithm faces similar
limitations of other local search methods and cannot be
expected to find a global optimum. In considering the Tic Tac
Toe strategy problem it is at first important to find a suitable
representation and to ensure that a GA can be effectively
applied.

The encoding of chromosome depends on game problem.
The Fig. 4 presents Tic Tac Toe game tree encoding. Each
gene is defined by the correspond move to be taken. The
chromosome is a table with 827 genes to represent each game
situation.

Fitness function is important to create an efficient GA and
it is formed as way:

f(n)=possible win configurations for current player –
possible win configurations for opponent player.

Fig. 4. Game tree encoding scheme

Based on its performance, each individual is assigned a

fitness measure. The higher its measure, the more likely it is
that an chromosome will take part in crossover and will be
passed to the next generation. The parents can be choosed
applying the genetic operator selection.

Once the parents are determined, the offspring is created by
one-point crossover [Fig. 6]. The genes are copied from first
parent at point of node 3 and the genes continue to be copied
from the other parent. The crossover probability pc is around
0,90.

The mutation [Fig. 7.] can occur at each gene of
chromosome with probability pm by a new random validate
value is chosen to replace the current one. The pm is very low
value (less than 0,009) since it is evaluated for each gene
independently. The essential goal of genetic operators is to
ensure general variety in the reproductive process over time.

The size of population is 50 and the number of generations
is 50.

The code for the implementation of Tic Tac Toe GA is a
C++-based programming framework for GAs. Some
modifications are made to accommodate the chromosome and
the fitness function for the specific encoding and game tree
solution.

891

IV. EXPERIMENTS AND RESULTS Comparison between different methods in Tic‐tac‐toe

1

Ti
m
e

Minimax

Alfa‐Beta

GA

Each of those algorithms has experimented and Fig.8and
Fig. 9give the results.

Fig. 8. Comparison between different methods in Tic Tac Toe

Comparison between different methods in Chess

1

10

100

Ti
m
e Minimax

Alfa‐Beta

GA

Fig. 6. Genetic operator One-point crossover

 Fig. 9. Comparison between different methods in Chess

V. CONCLUSION

We design and implement a variety of techniques for
solving Tic Tac Toe game and Chess. The GA could be
applied successfully to evolve these game strategies.

The optimal result of genetic algorithm for different games
is not guaranteed because it depends on the length of the
chromosome and the depth of the tree decision.

Further testing would serve for running GA with different
population parameters. In order to improve the fitness
function, it can change the weights, given to the possible
moves for each player. The number of paths or considering
the next shortest path from a given position may make the
fitness function more optimal heuristic function. It possible
also to create hybrid algorithm Alpha Beta pruning with GA
to find a good moves in two players games in a faster way.

Fig. 7. Genetic operator mutation

To illustrate the efficiency of the different methods, the

following charts are provided. The first chart [Fig. 8.] exhibits
the relative time needed for the programme to calculate the
best move for the Tic-tac-toe configuration, depicted in Fig. 9,
using each of the three methods. The results show that there is
little difference between the computational time for the three
algorithms for this task. However, there is a sharp distinction
in the second chart, which demonstrates the necessary time for
calculating the best 11th move of an ongoing chess game. Our
results show that the genetic algorithm is the best solution for
two-player zero-sum games with a high branching factor.

REFERENCES

[1] GA of Tic Tac Toe game: http://www.vclcomponents.com/s/
0__/code_genetic_algorithm_for_tic_tac_toe/v.

[2] Russell S., Norvig P., “Artificial Intelligence A Modern
Approach”, Third Edition, Prentice Hall, 2003, 2010.

[3] Schaefer S., “How Many games of Tic Tac Toe are there?
http://www.mthrec.org/old/2002jan/solutions.html, 2002.

892

