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Abstract – This article summarizes the main methods for curve 
fitting of non-linear sensor’s characteristics. The results are 
input data in SPICE model, built according to the basic 
measuring circuit within the sensor’s product information. The 
curve fitting is achieved by MathWorks MATLAB®’s Curve 
Fitting ToolboxTM and National Instruments Multisim. Curve 
Fitting ToolboxTM supplements MATLAB features with data 
preprocessing capabilities, using parametric and nonparametric 
models from a library. On the other hand Multisim provides the 
necessary ABM (analog behavioral model) sources, which use 
mathematical and conditional expressions to set their output 
voltage or current. They may contain mathematical and 
conditional expressions that consist of circuit voltages, currents, 
time and other simulation parameters. ABM is an extremely 
powerful feature which provides an efficient way to macro model 
signal processes through non-linear mathematical and 
conditional expressions. 
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I. INTRODUCTION 

At the core of any data acquisition system is interpretation 
of a voltage signal based on information about the analog 
sensor that makes the measurement intelligible. Typically, 
these are standard curves and equations specific to the type of 
transducer. Sensor calibration, however, takes this process one 
step farther by considering transducers on an individual basis. 
The sensor output voltage is mapped to a physical 
measurement based on metrics obtained from a specific sensor 
calibration. Although many sensors are linear over the limited 
range, these sensors exhibit a slight but progressively more 
nonlinear characteristic as the measurement range widens. 
Consequently, over an extended span, curve fitting is 
necessary if the system is to achieve a high level of precision. 

With the facility of computation now available through 
digital computers and microprocessors, the problem of 
estimation of transducer’s transfer characteristics is being 
increasingly tackled using software techniques. However, for 
inherent nonlinear sensors, a software solution depends upon 
the proper approach through mathematical modeling of the 
response curve [1, 2, 6]. 

The purpose of this paper is to assist engineers and 
scientists to implement the newly released Curve Fitting 
Toolbox in order to achieve more precise results. These 
results can be used as input data for the simulation models. 

II. PARAMETRIC MODELS IN MATLAB 

TABLE I 
CURVE FITTING TOOLBOX LIBRARY MODELS 

Type of Fit Description 
Exponentials 
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a0 – models a intercept term 
in the data and is associated 
with the i = 0 cosine term; 
w – fundamental frequency of 
the signal; 
n – number of terms 
(harmonics) in the series and 
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a – amplitude; 
b – centroid (location); 
c – related to the peak width 
n – number of peaks to fit, 
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n+1 – order of the 
polynomial; 
n – degree of the polynomial, 
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Power Series 
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a, b, c – model’s parameters. 
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n – degree of the numerator 
polynomial, ; n [0;5]
m – degree of the 
denominator polynomial, 
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Sum of Sines 
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a – amplitude; 
b – frequency; 
c – phase constant for each 
sine wave term; 
n – number of terms in the 
series. 

 
Parametric fitting involves finding coefficients (parameters) 

for one or more models that fit to data [4, 8]. The data is 
assumed to be statistical in nature and is divided into two 
components: a deterministic component and a random 
component [3]. The deterministic component is given by a 
parametric model and the random component is often 
described as error associated with the data. The model is a 
function of the independent (predictor) variable and one or 
more coefficients. The error represents random variations in 
the data that follow a specific probability distribution. 
Systematic variations can also exist, but they will lead to a 
fitted model that does not represent the data well. To improve 
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the fit it may be necessary to increase the number of  
iterations. The fit is well behaved over the entire data range 
when the residuals are randomly scattered about zero.  

After fitting data with one or more models is necessary to 
evaluate the goodness of fit. A visual examination of the fitted 
curve displayed in Curve Fitting Tool should be first step. 
Beyond that, the toolbox provides these methods to assess 
goodness of fit for both linear and nonlinear parametric fits [3, 
4, 8, 9]: 

 Residual analysis 
 Goodness of fit statistics 
 Confidence and prediction bounds. 

These methods group into two types: graphical and 
numerical. Plotting residuals and prediction bounds are 
graphical methods that aid visual interpretation, while 
computing goodness of fit statistics and coefficient confidence 
bounds yield numerical measures that aid statistical reasoning. 

Graphical measures are more beneficial than numerical 
measures because they allow to view the entire data set at 
once, and they can easily display a wide range of relationships 
between the model and the data. The numerical measures are 
more narrowly focused on a particular aspect of the data nad 
often try to compress that information into a single number. In 
practice, depending on data and analysis requirements it is 
necessary to use both types to determine the best fit. 

When fitting data that contains random variations, there are 
two important assumptions that are usually made about the 
error: 

 The error exists only in the response data, and not in 
the predictor data. 

 The errors are random and follow a normal (Gaussian) 
distribution with zero mean and constant variance, σ2. 

The errors are assumed to be normally distributed because 
the normal distribution often provides an adequate 
approximation to the distribution of many measured 
quantities.  

III. CURVE FITTING AND SIMULATION 

On figure 1 is illustrated the proposed methodology for 
curve fitting and modeling methodology. 

On step 1.1 the chosen characteristic must be represented as 
workspace vectors with the same length. To perform any 
curve fitting task, must be selected at least one vector of data: 

 X data – selects the predictor data. 
 Y data – selects the response data. 

 

Step 1: Beginning of Curve Fitting

Step 1.1: Importing Data

Step 1.2: Choosing The Type of Fit

Step 1.3: Curve Fitting. Displaying The Results

Step 1.4: Estimation of Results

Step 2:Beginning of Modelling

Step 2.1: Modelling

Step 2.2: Simulation

Step 2.3: Comparing The Results with Product Information .

Requirements
Verification

Saving/Exporting 
The Results

Yes

No

Requirements
Verification

Yes

No

 
Fig. 1. Block diagram of curve fitting and modeling methodology. 
 
Also it could be set the weights associated with the 

response data. If weights are not imported, they are assumed 
to be 1 for all data points. 

On the next step 1.2 we choose one model from the library 
of parametric models. According to the shape and specificity 
of the sensor characteristic the appropriate selection must be 
done. 

Step 1.3 displays the results of fitting. 
The importance of step 1.4 consists in the analysis results. 

It must be examine the fitted curve, residuals, goodness of fit 
statistics, confidence bounds, and prediction bounds for the 
current fit. It is recommended to compare the current fit and 
data set to previous fits and data sets by examining the 
goodness of fit statistics. Figure 2 shows this in detail. 

On step 2.1 the parts from sensor’s basic measuring circuit 
should be substitute by ABM sources with. As input data for 
ABM sources is used the results of fitting. The idea of this is 
seen in detail on figure 3. 

Once the model is ready we can run the simulation with 
given parameters – step 2.2. 

The basic structure of the proposed model of gas sensor is 
shown on figure 4. The main purpose of model is to simulate 
the change of the output voltage as slope function of the input 
physical phenomenon. This is achieved with a block “Transfer 
Function”. The environment is presented by block 
“Externalities”. Changing the signal due to external factors 
(mainly temperature and relative humidity) are calculated in 
“Externalities” block and added to the sensor’s signal by 
voltage summer. 
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Step 1.4.1: Residuals Plot Analysis

Step 1.4.2: Goodness of Fit Statistics

Step 1.4.3: Confidence and Prediction Bounds

1.4

 
Fig. 2. Estimation of results. 

 
 

Step 2.1.1: Choosing a Characteristic for Modelling

Step 2.1.2: Block Diagram Composing

Step 2.1.3: Substitute The Parts with ABM blocks 

Step 2.1.4: Designing The Sensor’s Model

Step 2.1.5: Importing a Curve Fitted Data
as Voltage Value in ABM Blocks

2.1

 
Fig. 3. Modelling. 

 

TABLE II 
CURVE FITTING TOOLBOX LIBRARY MODELS 

Goodness of fit Best-case value 
Sum of Squares due to Error (SSE) 0 

R-square (R2) 1 
Adjusted R-square (Adjusted R2) 1 

Root Mean Squared Error 0 
 
The transfer function and other characteristics, which 

describe the effects of temperature and humidity, can easily be 
modeled by appropriate behavioral elements. The behavioral 
elements use mathematical and conditional expressions to set 
their output voltage or current. They contain mathematical 
expressions obtained by curve fitting. The main advantage of 
using a mathematical function is short simulation time and 
better convergence [7]. 
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Fig. 4. Gas sensor’s model. 

 
Using the existing library of ABM blocks in National 

Instruments Multisim and figure 4 is developed behavioral 
model of TGS 2600 gas sensor – figure 5 [5, 7]. 

 

 
Fig. 5. Gas sensor’s model in NI Multisim. 

 
The data, fit, prediction bounds and residuals for fitting of 

full transfer characteristics are shown in figure 6. In table III 
are given the fitting numerical results for model’s parameters 
and goodness of fit statistics. For a first fitting model 9th 
degree polynomial (Poly9) is chosen. For a second model is 
chosen power model with three parameters (Power2).  As 
shown by results the residuals for Power Fit 2 are randomly 
scattered around zero and indicating that this model describes 
the data well. The same conclusion can be done comparing 
numerical values of goodness of fit statistics. 
 
 

 

Fig. 6. The data, fit, prediction bounds and residuals for 
transfer characteristic of TGS 2600 sensor. 
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Results of the simulation process in NI Multisim are shown 
in figures 7 and 8. 
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Fig. 7. Sensor’s transfer function under the influence of 
temperature. 

 

 

Fig. 8. Sensor’s transfer function under the influence of 
relative humidity. 

IV. CONCLUSION 

This paper suggest an systematic approach for 
implementing curve fitting models and methods in order to 

achieve equation that precisely describe sensor’s transfer 
characteristic and used as initial conditions for simulation 
process. As illustration experimental results from the whole 
process are presented. 

TABLE III 
RESULTS FROM CURVE FITTING OF TGS 2600 TRANSFER CHARACTERISTIC 

Type of fit 9th Degree Polynomial Power Fit 2 

Model 
f(x) = p1.x9+p2.x8+p3.x7+p4.x6+ 

+p5.x5+p6.x4+p7.x3+p8.x2+p9.x+p10 
f(x) = a.xb+c 

p1 -2.115e-015 a 0.9434 
p2 9.705e-013 b -0.1878 
p3 -1.878e-010 c -0.2257 
p4 1.997e-008 
p5 -1.273e-006 
p6 5e-005 
p7 -0.001195 
p8 0.01671 
p9 -0.1302 

Coefficients 

p10 0.8215 

 

SSE 0.0008261 0.0003024 
R-square 0.9979 0.9992 

Adjusted R-square 0.9942 0.9991 
Goodness of fit 

RMSE 0.01285 0.00502 
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