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Abstract – Wavelet analysis is applied to time-domain signals 

of conducted measurements on cables with multiple reflections in 

order to detect repeating patterns in the time-frequency domain. 

In conducted radio frequency measurements the reflection is one 

of the most varying components of the measurement uncertainty. 
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I. INTRODUCTION 

In conducted radio measurements multiple reflections due 

to connections are always present, even if matched cables are 

used, and this effect plays an important role in the 

measurement uncertainty. In this article we present an 

analyzing method based on wavelet transform to study the 

nature of multiple reflections in a cable. The method is also 

tested with an artificially mis-matched cable, which has a part 

with 75 Ω impedance between two 50 Ω impedance pieces, 

without impedance matching. 

II. ON WAVELET ANALYSIS 

Wavelet analysis or multiresolution analysis [1–3] is a 

widely used tool in data processing, especially in image 

compression and noise reduction [4,5], but it can be also used 

for solving differential equations [6–8]. The results of the 

wavelet analysis can also detect patterns. 

Let f be a function of the space of the square integrable 

functions L
2
( ). Wavelet analysis can be introduced e.g., as a 

generalization of the windowed Fourier transform  
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Here w(t) is the window function, τ and ω are the time and 

angular frequency of the transformed signal, and j and k are 

the indices of the values resulting from the discrete 

transformation, belonging to τj = j ∙ τ0 and ωk = k ∙ ω0, 

respectively. The reproduction, or synthesis of the original 

signal from its continuous transformed counterpart can be 

written as a double integral, similar to the original inverse 

Fourier integral, whereas the synthesis of the discrete 

windowed Fourier transformed signal from its coefficients is 

to be calculated as 
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where   jk(t) is the basis function of the transformation 
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with overline meaning the complex conjugation. Using this 

notation, transformation (2) can be rewritten in a shortened 

form 
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The wavelet transform has similar formula, except that the 

transformation function is different, i.e., in case of discrete 

transformation 
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where the wavelets 
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Similarly to the window functions, there are many types of 

wavelets, but once its type is chosen, all the wavelets are 

generated as scaled and shifted versions of one function, the 

mother wavelet ψ(t). This means that while in case of the 

windowed Fourier transform, the envelop of the transforming 

function remains the same (only shifted in time), and 

increasing frequency manifests in more oscillations within the 

window function, in case of the wavelet transform the shape 

of the transforming function remains similar, only shrunk with 

the increasing frequency. A demonstration for the basis 

function shape can be seen in Fig. 1. 

The inverse transformation takes the form 
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In this equation the first summation is necessary to set the DC 

or low frequency components of the signal f(t), whereas the 

second part makes the higher frequency refinements. The 

basis elements ϕ0k(t) of the lowest frequency part are the 

scaling functions. They behave similarly to wavelets in 

Eq. (7). With increasing the frequency index j, the 

corresponding frequency doubles, as it can be seen from (7) 

and Fig. 1. It can also be observed in (7) that by increasing j 

by 1, the shift distance is halved. This property is very 

favourable if sharp edges, quick changes have to be 

reproduced, as near the changes the wavelet coefficients djk 

are large, and they are negligible in regions where smooth 

changes are present only. Such functions are often present 

both in image processing and in one dimensional data 

analysis, and they cannot be treated properly with windowed 

Fourier analysis, discrete cosine transform, etc., where the 

window width is constant, and usually much larger than the 

edge which is studied by it. 

In practical applications, where a one or two dimensional 

digital (sampled and quantized) signal is analyzed, the highest 

frequency corresponds to the sampling frequency. During the 

analysis the vector (matrix in 2D) is transformed according to 

Fig. 2, consecutively. The frequency domain is always halved, 

the high-pass part will belong to the actual wavelets, the low 

pass one to the scaling functions; this can be further analyzed. 

Downsampling is needed, thus the total number of expanding 

coefficients remain constant after each step; cj-1 l and dj-1 l are 

half as long as the starting cj l. 

The synthesis or reconstruction step is opposite to the 

analysis step plotted in Fig. 2. 

III. STUDY OF MULTIPLE REFLECTIONS IN COAXIAL 

CABLES 

In order to study multiple reflections we have prepared a 

wrong connecting cable from Hirschmann KOKA 709 (75 Ω), 

and H155 (50 Ω) low loss coaxial cables. 50 Ω instruments 

were used for the measurement, and the connecting ends of 

the cable under test (CUT) were the H155 type lines, the 

middle part was substituted by 1.62 m of KOKA 709 line. As 

a reference high precision cable with attenuator was applied. 

As a first step, the transmission characteristics of the cable 

was determined by a network analyzer; its parameter S21can 

be seen in Fig 3. A clear resonance valley is present at the first 

marker, near 105 MHz. 

 

Fig. 3. S21 of the studied cable measured by Rohde&Schwarz ZVL 

Network Analyzer (9 kHz to 6 GHz) 
 

 

As a test signal we have applied a carrier signal modulated 

by a 30 ns burst with a period of 200 ns. The carrier 

frequencies were near the 105 MHz point as the transmission 

   

   

   

 

Fig. 1. Basis functions of a windowed Fourier transform (blue lines) 

with Gaussian window (red lines) and a wavelet (Daubechies-4, 

green lines) at three frequencies or resolution levels. 

 

 

 

Fig. 2. Schematic diagram of one step in the wavelet analysis.  

Filter coefficients gl and hl represent the high-pass and  

low-pass filters, respectively; the circles mean downsampling by 2. 

The starting vector cj k can be either the original sampled signal or 

the low-pass output of the previous step. 
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parameter varied there rather quickly, thus the modulated 

signals two sidebands had really different propagation 

conditions. Wavelet analysis is efficient where the quick 

changes in the time domain are present, hence the usage of the 

short bursts as modulator signals, practically the edges and 

their near environments are interesting. The cable was 

measured by a 5 GS/s Tectronix oscilloscope, an example 

with its reference signal can be seen in Fig. 4. The modulator 

and modulated signals were not synchronized in order to be 

able to study different relative phases, thus different shapes of 

signals. 

Automatic measurement environment was prepared to 

gather sufficiently large number of data vectors, at the 

frequencies 93 MHz and 120 MHz. one hundred of 

measurements were carried out and wavelet transformed. The 

resulting coefficients varied a lot, as it is demonstrated in 

Fig. 5. 

In order to see the trends, the square of the coefficients djk 

were summarized for all the signals. The result’s square root 

was normalized by the number of measurements, 
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and plotted in Fig. 6 for Nm = 10 and Nm = 100. The upper 

index n means the serial number of the measurements, Nm the 

total number of measurements.  

Fig. 7 contains the results for various resolution levels, i.e., 

for various frequency components. Ten analysing steps 

(j = 0...9) were carried out, but only those are given where 

interesting characteristics can be seen. The lower frequency 

components do not differ significantly from the reference. 

IV. CONCLUSION 

The normalized wavelet coefficients of the reference and 

the multiple reflected signals can be distinguished in higher 

frequencies, however, the low frequency terms are in 

approximately the same, at least in average. The sampling 

time ts = 400ps of the two-channel oscilloscope is just about 4 

to 5 refinement steps away from the 93-120 MHz carrier 

frequency’s characteristic time, thus the high frequency 

effects of the reflections and nonlinearities should be found in 

the first couple of steps, thus our results meet the 

expectations. Also, ts becomes commensurable with the 30 ns  

 

Fig. 4. An example of the measured signal with a carrier frequency 

of 120 MHz coming through the cable with reflection points (dashed 

blue line) and a reference cable (continuous red line). The horizontal 

axis is the number of the sampling. 

 

 

Fig. 5. The 5th wavelet transforms of 10 different signals from the 

cable with multiple reflection points. 

 

 

 

Fig. 6. The effective wavelet coefficients for 10 (upper subfigure) 

and 100 measurements. Data of cable with multiple reflection points 

is plotted with blue dashed line, the reference with red continuous 

line. Resolution index j = 1. 

 

Nm = 100 

Nm = 10 
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burst time after 6-7 refinement steps, thus the lower frequency 

terms will contain mostly the burst itself. Multiple reflection 

in conducted measurements can be characterized by a 

significant increment in the average fine resolution wavelet 

coefficients. 
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Fig. 7. The effective wavelet coefficients after 100 measurements. 
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