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Abstract: This paper presents optimization method for synthesis of
generalizedhigh order microwave filters with arbitrary topology. The
method utilizes local optimizer for coupling matrix determination.
The synthesis procedure converges very fast as for a initial point is
used a vector based on the Chebyshev all pole filter for the same
degree of the filter. To validate the proposed synthesis method two
numerical examples for resonant filters are computed. The frequency
responses from the synthesis procedure and the theoretical responses
show excellent agreement.
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I. INTRODUCTION

Microwave coupled resonator filters play important role in
the modern communication systems. The constraint
RF/microwave spectrum requires high attenuation in the stop
band and low insertion loss in the passband of the filters.
These requirements can be met only by cross-coupled
microwave filters, realizing attenuation poles on finite
frequencies. Cross-coupled resonator filters allow using
various topologies with variety of frequency responses. The
microwave filter modelling is very important for the fast and
accurate design.

Key point in the obtaining of the coupling matrix
corresponding to the practical filter topology is to convert its
transversal form to folded form using matrix rotations. Most
of the matrix rotation sequences are given in [4]. It is noticed
that this method for synthesis suffers from generality, because
the matrix rotations cannot be derived for every one practical
filter topology. Some of the matrix rotation sequences cannot
converge in order to find the coupling matrix. Some of the
disadvantages in this method are solved if arrow form of the
coupling matrix is used [5] or Pfitzenmeir method is used [6].

In many practical cases, it is necessary to define the filter
topology in order to satisfy some manufacturing or space
requirements. In this case, the exact solution is hard to be
found utilizing the conventional synthesis methods.

One possible general solution to the filter design for
arbitrary topology is to apply direct local optimization over
the coupling matrix with successive starting point. In the basic
papers proposed optimization method for coupling matrix
synthesis [7,8], the starting vector is set to arbitrary values.
This makes the local optimization very unstable method for
cost function minimization. Another method is to use global
optimization method for finding the coupling matrix for
certain filter topology.
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They perform robust optimization, no matter about the
starting point. Unfortunately the global optimizers such as
genetic or stochastic have very slow convergence to the cost
function minimum.

This paper presents optimization method for synthesis of
high microwave filters with arbitrary topology. The method
uses Nelder-Mead local optimizer for coupling matrix
determination. The synthesis procedure converges very fast as
for a initial point is used a vector based on the Chebyshev all
pole filter for the same degree of the filter. The cost function
is based on amplitude of the transmission and reflection
coefficient zeros and their values at the cut-off frequencies
and the reflection coefficient maxima. To validate the
proposed synthesis method two resonant filters are designed
with asymmetrical responses. The frequency responses from
the synthesis procedure and the theoretical responses show
excellent agreement.

II. RESONATORFILTER CHARACTERISTICS

The synthesis procedure starts with the low-pass prototype
with normalized angular frequency of passband 1ω = . The
transfer and reflection coefficients may be expressed as a ratio
of two N-th degree polynomials as follows:
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where ω is real angular frequency and
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value of thereturn loss indB, in the passband of the filter. It is
assumed that all polynomials are normalized to their highest
degree coefficient.

The method of computing the numerator of the reflection
coefficient is outlined in [3].
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where both polynomials can be represented by two
polynomials: ( ) ( ) ( )N N NG U Vω ω ω= + and

( ) ( ) ( )N N NG U Vω ω ω′ = − . Both polynomials ( )NU ω ,

( )NV ω can be arranged according to the Cameron's recursive

procedure in [3]. Obviously the roots of ( )NU ω corresponds

reflection zeros, and the roots of ( )NV ω correspond to the in-

band reflection maxima.
It can be easily found that the transfer coefficient may be

expressed in the following way[3]:
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where ( )NC ω is the filtering function. For general

Chebyshev characteristics, the filtering function is in the form:
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, where nω is the angular frequency of

the prescribed transmission zero.
In order to obtain the coupling matrix, it is necessary to

consider the equivalent circuit of general coupled resonator
filter shown on Fig.1.
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Fig.1. General coupled resonator filter

The equivalent circuit consists ofN series coupled
resonators with frequency independent couplings ijM ( i j≠ ),

between thei-th and j-th resonators. The circuit is driven by
voltage source E with internal normalized resistance

1 1R = and loaded to normalized impedance2 1R = . The

resonant frequency of each resonator0if is represented by the

self-coupling coefficient iiM and the center frequency of the

filter. The transmission and reflection coefficients of a lossless
filter of N-th order depend only of the coupling matrixМ

(7):
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where [ ] [ ] [ ] [ ]A j R W Mω= − + + , and [ ]R is

( ) ( )2 2N N+ × + matrix, which elements are zeroes except

11 2, 2 1N NR R + += = . [ ]W is a ( ) ( )2 2N N+ × + matrix, where

the main diagonal elements are unity except

11 2, 2 0N NW W + += = . All remaining elements of[ ]W are zeroes.

[ ]M is the coupling matrix, symmetrical around the main

diagonal.

III. SYNTHESISOF MICROWAVE FILTER WITH

COUPLING MATRIX OPTIMIZATION

The cost function used in the optimization process is based
on the zeroes and poles of the filtering function NC , assuming

that the number of poles isP and zeroesN [8]:
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In the cost function pω are the prescribed transmission

zeros, zω are the zeros of the reflection coefficient, andmω

are the in-band maxima frequencies. In most papers
concerning the optimization of the coupling matrix the last
term of the cost function is missing. Because of the high order
of the filter, the value of the transmission coefficient at the
prescribed zeros pω is comparable to the precision of the

computer. This make the optimization process hard to
converge at the global minimum of the cost function. The
global minimum is the Chebyshev solution for the microwave
filter. As the values of the second term of the cost function
needs to be weighted, in order to achieve comparable values
to the other terms of the cost function. Obviously there will
come up a problem with the choice of the weighted constant.
For each filter topology and frequency response, a different
constant will be necessary. One possible solution for the
problem with the weights is to make each term of the cost
function in logarithmic scale with no weight coefficient.
Another solution is to add to the cost function another term
equalizing the reflection coefficient at its maxima to the ripple
factor ε . In this case the cost function contains all possible
constraints for the filter response. The zeros for the
transmission coefficient 21S are set at the prescribed

frequencies. The reflection coefficient must be zero at the

frequencies zω , equal to 2 1ε ε + at the normalized cut-off

frequencies 1cut offω − = ± and equal to 2 1ε ε + at the

frequencies mω at the minimum of the cost function. The

cost function may be modified with respect to the
transmission coefficient at the frequenciesmω . At these

frequencies 21S must be equal toε , but the cost function will

not be changed in its character.
In this way it is possible to formulate the local optimization

problem for obtaining the coupling matrix.
The starting point for optimization of the coupling matrix

is very important for the reaching of the global minimum of
the cost function (7). Having on mind that a local optimizer is
used, the starting vector should be close to the target value in
order to assure a fast convergence of the method. One of the
possible starting coupling matrices is to set all self-coupling
couplings to zero ( 0iiM = ) and all direct couplings to 1. The

cross-coupling coefficients are all set to zero. The second
possible starting coupling matrix is to use classical Chebyshev
filter from the same order. All self- and cross-couplings are
set to zero.

The investigation of the problem of high order filter design
two numerical designs are investigated.

III. N UMERICAL RESULTS

For verification of the optimization method presented in
this paper, itis applied to an asymmetric resonator filters.

A. Asymmetric 9 Resonator Passband Filter

The first numerical example is 9-th order CT filter sharing
common resonator. This filter is of Chebyshev type and it has
return loss more than 20dB in the passband. The transmission
coefficient prescribed zeros are placed on normalized
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frequencies [ ]1.8,  1.4,  1.3,  1.6pω = − − .The coupling

diagram of thesynthesized filter is shown on Fig.2.
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Fig.2. Coupling scheme of an asymmetric 9 pole filter

The reflection and transmission zeroes are calculated and
summarized inTable 1.

Table 1. Poles and zeros of asymmetric nine resonator filter
№ Reflection zeros Transmission zeros Roots of NV
1 -j0.9880 -j1.8 -j0.9514
2 -j0.8888 -j1.4 -j0.7984
3 -j0.6795 j1.3 j0.9566
4 j0.9893 j1.6 j0.8166
5 j0.8998 j0.5654
6 j0.7051 -j0.5331
7 j0.4006 j0.2164
8 -j0.3629 -j0.1752
9 j0.0211

The initial point for the coupling matrix elements for the
optimization procedure is to set the values of the all pole nine
resonator Chebyshev filter 1 9 0.9876S LM M= = ,

12 89 0.9168M M= = , 23 78 0.5870M M= = ,

34 67 0.5480M M= = , 45 56 0.5372M M= = .

Fig.3 Cost function value during optimization for CT nine
resonator filter

All self coupling and cross coupling coefficients are set to
zero. The number of the independent values of the coupling
matrix is 23.

After 139 iterations for the optimization coefficient, the
optimization procedure converges. The values of the cost
function vs the number of iterations is shown on Fig.3. The
initial value of the cost function is 0.51 and the end value is

82.143.10− . The optimization process stopped because of
reaching local minimum of the cost function (7). The final
coupling matrix is:

0 0.9842 0 0 0 0 0 0 0 0 0

0 0.0012 0.7589 0.2868 0 0 0 0 0 0 0

0 0.7589 0.4095 0.5306 0 0 0 0 0 0 0

0 0.2868 0.5306 0.0498 0.4665 0.2788 0 0 0 0 0

0 0 0 0.4665 0.5535 0.4462 0 0 0 0 0

0 0 0 0.2788 0.4462 0.0035 0.4844 0.2049 0 0 0

0 0 0 0 0 0.4844 0.4152 0.5049 0 0 0

0

M

−

− −
−

=
−

0 0 0 0 0.2049 0.5049 0.0656 0.4767 0.4048 0

0 0 0 0 0 0 0 0.4767 0.5722 0.7031 0

0 0 0 0 0 0 0 0.4048 0.7031 0.0012 0.9842

0 0 0 0 0 0 0 0 0 0 0
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The frequency response of the designed filter, calculated
according to (6) and the coupling matrix derived in the
optimization process, is shown on Fig.4. It is clearly seen that
the normalized cut off frequency is 1cω = ± , while the

transmission zero frequencies are exactly
at 1.8,  1.4,  1.3, 1.6pω = − − .The maximum value of the

return loss is withthe prescribed value of-20dB.

Fig.4 Frequency response of nine resonator filter with asymmetric
response. Solid line-S21, dashed line- S11

B. Cascaded Quadruplet and Triplet Resonator
Passband Filter of 10-th Order

The 10-th order resonator filter is formed by cascade
connection of two trisections and one quadruplet section
between them (CQT filter). Each trisection realizes one
prescribed transmission zero and the quadruplet section
realizes two prescribed symmetrical transmission zeros. The
filter is of Chebyshev type and it has maximum return loss of
-20dB. The transmission zeroes are placed on frequencies

[ ]1.2,  2,  1.6pω = − ± .The coupling scheme of the filter is

shown on Fig.5.
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Fig.5. Coupling scheme of CQT filter of 10-th order

The roots of the polynomials in the numerator and
denominator in (1) are shown in Table2. The starting point for
the optimization process is based on the Chebyshev coupling
matrix elements 1 10 0.9854S LM M= = ,

12 9,10 0.8130M M= = , 23 89 0.5839M M= = ,

34 78 0.5444M M= = , 45 67 0.5321M M= = , 56 0.5321M = .
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Table 2. Poles and zeros of CQTfilter
№ Reflection

zeros
Transmission zeros Roots of NV

1 j0.9892 -j2 j0.9566
2 j0.9018 -j1.2 j0.8244
3 j0.7246 j1.6 j0.6032
4 -j0.9915 j2 -j0.9655
5 -j0.9201 -j0.8537
6 -j0.7647 -j0.6530
7 -j0.5203 -j0.3696
8 j0.4625 J0.3060
9 -j0.2057 -j0.0342
10 j0.1385

The number of the independent values of the coupling
matrix is 24 The optimization process converges fast in 238
iterations of the optimizer with end cost function value

71.64519.10− . Fig. 6 shows the cost function value with respect
to the iterations.

Fig.6 Cost function value for asymmetric five resonator filter
The coupling matrix derived in the optimization process is

given by (8). The corresponding frequency response
calculated by the coupling matrix and Eq.(6) is shown on
Fig.7.

Fig.7 Frequency response of 10-th order CQT filter with
asymmetric response. Solid line-S21, dashed line- S11

As it is clearly seen from Fig.7, the transmission zeros are
placed on the prescribed values The maximum value of the
reflection coefficient is -20dB. Both presented examples show

fast convergence of the cost function to a local minimum. In
both cases this local minimum is found to be a global
minimum corresponding to general Chebyshev filter. In both
cases the starting point for the optimization process was the
coupling matrix of classic Chebyshev filter. Starting from
random initial point leads to a local minimum not
corresponding to Chebyshev filter.

IV. CONCLUSION

This paper presents optimization method for synthesis of
microwave filters with arbitrary topology of high order. The
method uses local optimization method for coupling matrix
determination. The synthesis procedure converges very fast as
for an initial point is used a vector based on the Chebyshev all
pole filter for the same degree of the filter. To validate the
proposed synthesis method two resonant filters are designed
with asymmetrical responses. Both presented examples show
fast convergence of the cost function to a local minimum. In
both cases this local minimum is found to be a global
minimum corresponding to general Chebyshev filter. The
frequency responses from the synthesis procedure are within
the expectations and found to be consistent with the
theoretical responses and given filter specifications.
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