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Abstract – This paper proposes an optimal third-degree 

polynomial, which approximates Kronecker’s delta function with 

high precision. The polynomial is obtained by a new 

approximation method, called “method with compressed 

cosines”. The method is based on Chebyshev’s optimality norm. 

The polynomial is used for narrow bandpass IIR filter design. 

The filter’s selectivity depends on the parameter Q without 

increasing the polynomial’s order. With the proposed method an 

IIR filter with 5(6) multipliers, a very narrow passband and a 

high stopband attenuation can be designed.  

 
Keywords – IIR digital filters, Frequency response, Polynomial 

approximation. 

 

I. INTRODUCTION 

The task of filter synthesis is a mathematical problem of 

approximating ideal functions with rectangular shape. The 

transfer function of the filter results from the approximation. 

The aim is to obtain a mathematical relationship which has the 

lowest computational complexity and approximation error. In 

approximations with polynomials, this indicator is the degree 

of the polynomial. 

This paper will show a method for digital filter design 

based on a polynomial approximation with “compressed 

cosines”. 

II. BACKGROUND 

In some practical cases the passband filter is required to 

have a very narrow bandwidth. The ideal characteristic of a 

supernarrowband filter is Kronecker’s delta function 
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This is a transfer function of a filter that has a pass 

bandwidth equal to zero, stopband gain equal to zero and an 

infinite steepness of its characteristic. It cannot be realized in 

practice. Hence, Kronecker’s delta function needs to be 

approximated by another one, which can be realized. The 

approximation is carried out with a preset accuracy 0ε > . The 

difference between the ideal function and the approximating 

polynomial defines the error function. The two most popular 

norms for the approximation are 
2

L  - weighted integral least-

squares norm, and L
∞

 - weighted Chebyshev’s norm. In the 

literature different polynomial approximation methods are 

proposed. Fig.1 shows approximations with Hausdorff 

(Chebyshev) polynomial [1] using L
∞

 norm, with ( )sinc .  

function using 
2

L  norm, method of Parks-McClellan [2] with 

trigonometric polynomial using L
∞

 norm. 

It is seen that a suitable trade-off between the flatness in the 

stopband and the bandwidth must be done. In all the criteria, 

the functions have the oscillations in the stopband. These 

oscillations are undesirable. The goal is to obtain a rectangular 

shape of the ideal function, that has maximally flat pass band 

and stop band, and narrowest possible bandwidth. In 
2

L  case 

the oscillations increase near the main lobe. This is due to the 

Gibbs’ phenomenon [3]. In the approximations using L
∞

 

norm the oscillations are with equal amplitude. These 

approximations are known as optimal and equiripple. 

The approximations with rational functions [4, 5], have 

better properties than the polynomials approximations. The 

most popular are Chebyshev, Butterworth and Cauer. 

In [5, 6] a polynomial approximation method with 

compressed cosines is proposed. With this method a third 

degree polynomial with significantly better properties than the 

other polynomials approximations is derived. The 

approximation accuracy is close to the approximations with 

rational functions. The polynomial has the form 
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with coefficients: 
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Fig. 1. Polynomial approximations of the Kronecker’s delta 
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is the phase response off the allpass lattice filter with quality 

factor Q, [ ]0, 2
d

f f∈  is frequency, 
d

f  is the sampling 

frequency, 
0

f  is the middle frequency of the passband.  

Fig. 2 shows an optimal approximation of Kronecker’s delta 

function by an optimal 3rd degree polynomial . 
1s

f  and 
2s

f  are 

the two normed stopband frequencies. Their difference 

defines the bandwidth 
stop

f∆ . The passband is defined by 

pass
f∆  - the bandwidth at level -3dB. The approximation error 

ε  determines the stopband attenuation DS, and the quality 

factor Q the bandwidth 
stop

f∆ . The filter’s coefficients are 

obtained by those of the polynomial: 

 
4 3 2 1 2 3 4

2 , 2 , 2 , , 2 , 2 , 2
k

h b b b b b b b= . (5) 

The filter’s transfer function has the form 

 ( ) ( ) ( )0.25 0.5 exp 0.25 exp 2H j jε ϕ ϕ= − + − − − − . (6) 

III. DESIGN EXAMPLE 

The realization will be demonstrated with an example of a 

bandpass digital IIR filter design with the following 

specification: middle frequency in the pass band 
0

800f = Hz; 

100
pass

f∆ = Hz; sampling rate 8000
d

f = Hz; degree of the 

polynomial 3m = ; attenuation in the stopband 20DS ≥ dB.  

A normalization of the frequencies is done as 

 2 0.025
n pass d

f f f∆ = ∆ = ; 
0 0

2 0.2
n d

f f f= = . (7) 

The optimal approximation error is determined as 

 
20

1
0.0909

1 10
DS

ε = =

+

. (8) 

When the normalized bandwidth 
n

f∆  is set, the Q-factor 

can be determined approximately by the following five 

equations: 
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a1=5.6075e14 a2=-3.348e14 a3=8.7823e13 a4=-1.3321e13 

a5=1.2944e12 a6=8.4311e10 a7=3.7445e9 a8=-1.1304e8 

a9=2.2671e6 a10=-2.8705e4 a11=1885.71  
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a1=1.2838e25 a2=-9.0581e23 a3=2.79655e22 a4=-4.9689e20 

a5=5.6239e18 a6=-4.2396e16 a7=2.1628e14 a8=-7.435e11 

a9=1.6817e9 a10=-2.3764e6 a11=206.1499  
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a1=9.934e34 a2=-7.838e32 a3=2.7414e30 a4=-5.6059e27 

a5=7.4403e24 a6=-6.7267e21 a7=4.2269e18 a8=-1.8471e15 

a9=5,5072e11 a10=-1.0692e8 a11=1.2226e4  
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a1=-1.6808e41 a2=2.5067e38 a3=-1.4578e35 a4=3.5739e31 

a5=1.3647e27 a6=-3.3608e24 a7=1.016e21 a8=-1.6545e17 

a9=1.6554e13 a10=-1.0265e9 a11=36979.1  
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a1=-4.7623e49 a2=1.2294e46 a3=-1.1141e42 a4=2.0403e37 

a5=3.8601e33 a6=-3.5797e29 a7=1.5185e25 a8=-3.7635e20 

a9=5.697e15 a10=-5.176e10 a11=263267.1  

By substituting the defined in (7) 0.025
n

f∆ =  into (9), 

5.0714Q =  is obtained. This allows for defining the transfer 

function of the allpass lattice filter. The coefficients of the 

denominator of the transfer function are determined by those 

of the denominator of the Butterworth bandpass filter of first 

order with bandwidth  
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Fig. 2. Approximation of the Kronecker’s delta by a third-degree 

optimal polynomial 
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The coefficients in the numerator are the same as in the 

denominator, but in reverse order. 
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In Fig.3, the diagram of the designed filter is shown. A 

criterion for comparing the selectivity of the digital filters is 

the number of multipliers with which they are realized. 

The coefficients having the same value are realized with 

one multiplier to reduce the power consumption. As it is 

known, the allpass lattice filters are realized with 4 

multipliers. Therefore, the total number of multipliers in the 

diagram is 11. This scheme can be realized with only six 

multiplier as both allpass filters are the same and 

1 3
0.25h h= = − . If the filter’s coefficients are multiplied by 4, 

then 
1 3

1h h= = − . Then the filter will be realized with 5 

multipliers, as in digital signal processing the change of the 

sign with the operation x x= −  is performed. In this case the 

filter will amplify the signal four times (12dB). 

The scheme shows that all signals are summed. Therefore 

in the design the sequence of the operations is irrelevant, in 

accordance with the commutative law. This allows the input 

signal to pass twice through one allpass lattice filter. The 

bandpass filter is implemented with the scheme in Fig.4  

Fig. 5 shows the magnitude response in dB ( )10 lg x . Fig. 

6 shows an output response of a computer simulation of the 

filter with 5 multipliers. The filter input is fed with a 

discretized at 8000Hz linear chirp signal with frequency 

sweep from 1 to 4000Hz, amplitude of ± 0.25V and duration 

of 10 seconds. It is seen that the filter’s output response 

corresponds to the input specification. 

This implementation requires frame signal processing with 

buffers. The concatenation of two neighbor fragments is 

treated with "overlap" to remove the uncertainties, which 

result from the filtration at the beginning of each fragment. 

IV. DISCUSSION 

An advantage of the method of compressed cosines is that 

the approximation is carried out with third-degree polynomial. 

The polynomial’s coefficients are calculated easily. To obtain 

a high selectivity, it is not necessary to increase the degree of 
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Fig. 6. Computer simulation – output response 

 
Fig. 4. Functional diagram of the filter with 5 multipliers 

 
Fig. 3. Functional diagram of the filter 
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Fig. 5. Magnitude response 
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the polynomial, as in other polynomial approximations, but to 

use an allpass lattice filter with high Q-factor. The bandwidth 

of the stopband 
stop

f∆  is a result of the approximation. It can 

not be defined in the input specification. With a third-degree 

polynomial, a filter with an arbitrary bandwidth 
pass

f∆  and a 

stopband attenuation DS can be realized. For example, Fig. 7 

shows the magnitude response of a filter with a passband of 

1Hz and a stopband attenuation of 60dB.  

The most commonly used IIR digital filters are those of 

Butterworth, Chebyshev and Cauer. A criterion for comparing 

the selectivity is the number of multipliers.  

1. The scheme of the digital filter of Fig. 4 is realized 

always with 5 multipliers, regardless of the filter’s 

specification. This comes at the expense of using a larger 

volume of the memory, which is not a serious disadvantage. 

The filters of Butterworth, Chebysev and Cauer of first order 

are implemented by 4 multipliers. Due to the low order, their 

magnitude responses are identical. Fig.8 compares magnitude 

responses of bandpass filters with equal banwidth 
pass

f∆ . The 

magnitude response of the filter using compressed cosines has 

better selectivity. 

2. Butterworth, Chebysev and Cauer filters of second order 

are implemented by 7-9 multipliers. Fig.9 shows a similar 

comparison. In this case the magnitude response of the filter 

using compressed cosines with 5 multipliers has a lower 

selectivity. 

V. CONCLUSION 

The obtained results show that the selectivity of the filters 

with “compressed cosines” is determined by the steepness of 

the S-curve of the allpass filter’s phase response (Q-factor). 

From (4) it is seen that it is the function arctg(.). To obtain a 

high selectivity it is necessary to use a function with a greater 

gradient, e.g. tanh(.). Unfortunately, an allpass filter with such 

a phase response has not been realized until now. 

 The proposed method may be a good alternative in several 

applications in IIR bandpass filter design. 

REFERENCES 

[1] Sendov, B. Hausdorff Approximations. Kluwer Academic 

Publishers London 1990, ISBN: 0792309014. 

[2] Parks, T. W. and J. H. McClellan. A Program for the Design of 

Linear Phase FIR Digital Filters. IEEE Trans. on Audio and 

Electoacoustics, Vol. AU – 20, №3, pp. 196-199, August 1972. 

[3] B. Porat, A Course in Digital Signal Processing. New York: 

Wiley, 1997. 

[4] Daniels, R., Approximation Methods for Electronic Filter 

Design. McGraw Hill, 1974. 

[5] Schaumann, R., M.E. van Valkenburg. Design of Analog 

Filters, Oxford University Press 2001. 

[6] Apostolov, P. S. Linear Equidistant Antenna Array with 

Improved Selectivity, IEEE Transaction on Antennas and 

propagation, Vol.59, Issue10, pp.3940-3943, Aug. 2011. 

[7] Apostolov, P. S. Methof for FIR filter design with compressed 

cosine using Chebyshev’s norm. Signal Processing Elsevier, 

Vol. 91, Issue 11, pp. 2589-2594, Nov.2011. 

0 500 1000 1500 2000 2500 3000 3500 4000
-80

-60

-40

-20

0

Magnitude Response

f(Hz)

2
0
lg

lA
l

799 799.5 800 800.5 801
-3

-2

-1

0
Pass Band Ripple

f(Hz)

2
0
lg

lA
l

760 780 800 820 840
-80

-60

-40

-20

0

Stopband

f(Hz)

2
0
lg

lA
l

 
Fig.7. Bandpass filter - magnitude response 
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Fig. 9. Comparison of magnitude responses 
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Fig. 8. Comparison of magnitude responses 
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