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Abstract – A design procedure to reduce the deviation of the 

phase from 90º of allpass-based digital Hilbert transformers is 

proposed. This is achieved by introducing the phase sensitivity 

minimization of each individual allpass section in the cascade 

realizations of the two branches of the structure used. The 

effectiveness of the proposed design is experimentally proven. 
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I. INTRODUCTION 

Hilbert transformers (HT) are very important building 

blocks in both, analog and digital signal processing. They are 

used in telecommunications for generation of analytic and 

single-sideband signals [1] [2] and in many other modulation 

and demodulation schemes (mainly for splitting the narrow-

band signals to two (I and Q) components), in complex signals 

processing, in audio and video signal processing, and even in 

fields like mechanical vibration signal processing. Many 

approaches and methods of design of digital HTs have been 

developed in the last 50 years and most of them have been 

well systematized in [3]. The FIR based HTs are providing 

easily a linear phase response and unconditional stability but 

at the price of a very high transfer function (TF) order (say, 

several hundred), producing quite a high total delay and 

requiring higher power consumption. These disadvantages are 

eliminated in the IIR realizations, most often based on the 

usage of allpass structures. The theory of the allpass-based 

HTs is quite mature and several design methods using real or 

complex allpass structures have been summarized in [3]. 

Many new optimization-based methods for design of half-

band filters and HTs have been proposed since then (including 

even frequency response masking technique [4]), but no 

specific methods for accuracy improvement have been repor-

ted. Meanwhile the practical importance of the HTs grew 

considerably with the extension of the frequency ranges and 

the growth of the proportion of the narrow-band signals, 

described as analytic, in telecommunications. The problem 

with the accuracy of the realization of the HTs is of 

paramount importance in many of these telecommunication 

applications, like in the maintenance of I and Q channels 

balance in a wide frequency range. When the HTs are realized 

using a fixed-point arithmetic (what is often the case in the 

portable and mobile communication equipment), the limited 

word-length may reduce considerably that accuracy and 

special measures have to be taken to prevent that. Higher 

accuracy could be achieved by designing the HTs with higher 

TF order, but the portability of the equipment is imposing 

another constraint – the power supply limitation. The main 

aim of this work is to try to improve the accuracy of the 

allpass-based HTs throughout minimization of their sensitivi-

ties. It will reduce the computational load and will permit 

shorter word-length and lower power consumption for given 

accuracy. The design procedures should be straightforward, 

without iterative and complicated optimization steps, in order 

to be easily used by practicing engineers and the structures 

have to be with the lowest possible TF order and complexity. 

II. DESIGN PROCEDURE 

An ideal Hilbert transformer (also known as a 90-degree 

phase shifter) is described in frequency domain as [5] 
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A way to synthesize an IIR Hilbert transformer (called also 

a complex half-band filter) is to start with an odd-order half-

band filter with specifications Fp, Fs, δp and δs, interconnected 

by the relations [3] 

 spsps FF  5.0;11);2/sin( 2
max  ; (2) 

and with a TF )(zG  that may be represented as a sum of two 

allpass TFs [3] [5] 
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An "even-odd" decomposition (Fig. 1) and the substitution 

 )(2)( jzGzH   (4) 

must be applied in order to obtain the real allpass TFs. Thus 

 

Fig. 1. "Even-odd" decomposition of the TF poles. 
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represents the HT as a complex sum of two real allpass 

functions, whose realization (for real input signal x(n)) is 

given in Fig. 2. Details about the design are given in [3] [5]. 
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Fig. 2. HT realization. 

III. ALLPASS SECTIONS REALIZATIONS 

The allpass TFs in Eq. (3) are having all their poles on the 

imaginary axes, while those in Eq. (5) are all on the real axes. 

In order to obtain higher accuracy in the 90º phase shifting in 

case of a limited word-length environment, the allpass TFs in 

Fig. 2 could be realized as cascades of special second-order 

allpass sections. It follows from Fig. 1 that if a cascade 

realization would be used, as the possible real pole positions 

are scattered all around the real axes, the allpass sections with 

low sensitivities for all these positions will be needed.  

We have studied [6] all known (about 20) first order 

sections and it was found that several low-sensitivity sections 

for every real pole position could be found. We select to use 

the most typical four of them, namely the ST1 section, 

providing low-sensitivity for poles near z=1, MH1 and SC, 

having low sensitivity for poles near z=0 and SV section for 

poles near z=-1. The special sections are obtained from these 

real first order sections by changing the signs of the 

coefficients of the allpass TFs in Eq. (3) and by replacing z
-1

 

by z
-2

 as it is shown in Fig. 3. We denote these new second 

order allpass sections as MH1-2, ST1-2, SV-2 and SC-2. 
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Fig. 3. Different special second-order allpass sections. 

Their TFs are: 
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IV. ALLPASS SECTIONS SENSITIVITY 

INVESTIGATIONS 

In Fig. 4 a, b the worst-case (WS) phase-response sensitivi-

ties of the above mentioned four special sections are given for 

realizations with two different TF pole positions. The sensiti-

vities are obtained by using the package PANDA [7]. By 

comparing the results with our previous investigations in [8] 

[9], it can be noted that the WS sensitivity behavior of the 

special second order sections is very similar to that of the 

corresponding first order sections but with the symmetry 

around the frequency f = 0.5. It is clearly seen that there exists 

a proper selection of the sections for every given TF pole 

position because of the significant difference between the 

maximal values of the sensitivities (in some cases it can reach 

more than 100 times especially for the poles near 1 ). 

 
(a) bMH1-2 = 0.18654 

 
(b) bMH1-2 = 0.94167 

Fig. 4. Worst-case phase-sensitivities of second-order allpass 

sections (Fig. 3) for two different TF poles positions. 

V. OVERALL SENSITIVITY INVESTIGATIONS 

In order to estimate how the proper choice of the special 

sections will affect the behavior of the HT realization in a 

limited word-length environment, we have designed and 

investigated a ninth order HT having the TF poles positions 

given in Fig. 1 (the initial elliptic half-band filter specifica-

tions are: passband frequency Fp = 0.24 and stopband atte-

nuation δs = 0.01 (Rs = 40 dB), producing Δφmax = 1.15º). 

Then, we have designed 4 different HT realizations (Fig. 2). 

The first one was realized using the standard way (using only 

MH1-2 sections) and it is marked in the figures as "4MH1-2". 

The allpass sections selection for the other realizations is 

based on the sensitivity minimization of the individual sec-
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tions depending on their poles positions. Thus, in the second 

HT realization (denoted with "4 ST1-2") four ST1-2 sections 

were used. In the third and fourth implementations, two MH1-

2 and two ST1-2 sections have been selected. In the first case, 

we have a special section of each type in every branch of the 

realization, while in the second case – two MH1-2 sections are 

used in the upper branch (the real output) and two ST1-2 sec-

tions – for the imaginary output. The results for the overall 

sensitivity of the two branches are shown in Fig. 5. 

 
(a) 

 
(b) 

Fig. 5. Worst-case phase-sensitivities of the HT (Fig. 2) realized 

with different sets of allpass sections (for a 9-th order HT). 

It appeared that the best configuration is with two MH1-2 

and two ST1-2 sections, each in every branch (I case), 

providing the lowest overall sensitivity in both paths. 

VI. INVESTIGATION OF THE INFLUENCE OF THE 

SECTIONS COMBINATIONS IN THE BRANCHES 

The phase difference between the two outputs in Fig. 2 will 

not be exactly 90º. Over some frequency range (narrower than 

half of the sampling frequency) it will alternate around this 

value with amplitudes Δφmax depending ideally only on the 

selected value of δs Eq. (2), but in reality – also on the design 

accuracy and on the parasitic effects of the digital realization. 

These additional deviations should be kept as lower as pos-

sible mainly by reducing the influence of the parasitic effects 

(by minimizing the sensitivities to the variations of the multi-

plier coefficients values). It will appear from what follows, 

that it might not be an easy straightforward procedure. 

The accuracies of the HT realizations (the phase difference 

between the two branches) in a limited word-length environ-

ment are compared in Fig. 6. Based on the results shown in 

Fig. 5, it is natural to have a high sensitivity (to small changes 

in the two branches) of the phase difference between the two 

outputs in Fig. 2 for 4 MH1-2 HT realization, but the results 

shown in Fig. 6a are quite surprising, compared to these in 

Fig. 6b,c,d (with minimized sensitivity). We suppose that this 

might be an effect due to some internal compensation between 

the parasitic effects in the branches, explained with the 

different signs of the sensitivities. The worst-case sensitivity 

WS, used in our investigations, is not able to reveal these 

mutual compensations, because it is eliminating the signs of 

the individual sensitivities.  

The highest accuracy, as it is shown in Fig. 6, is achieved 

when we have two MH1-2 and two ST1-2 sections each in 

every branch (I case) of the HT. In this case, the selection of 

the sections and their placement in the branches are made 

under the above mentioned observations. 

 
(a) using 4 MH1-2 sections 

 
(b) using 4 ST1-2 sections 
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(c) using 2 MH1-2 and 2 ST1-2 sections - I case 

 
(d) using 2 MH1-2 and 2 ST1-2 sections - II case 

Fig. 6. Word-length dependence of the accuracy of the HT phase 

difference for realizations with different allpass sections. 

As it can be seen after quantization to 2 bit (in CSD code) 

not only the fluctuations of the phase difference in Fig. 6a,b,d 

are growing very much above the ideal, but the range of 

frequencies over which this difference is approximately 

constant, is sharply reduced, while in Fig. 6c these parameters 

are practically unchanged. 

The main conclusion of these investigations is that besides 

the sensitivity minimization, an additional step, consisting of a 

study of all possible combinations of the selected allpass 

sections within the branches, has to be introduced. A more 

general solution of this problem will be a derivation of a 

formula about the sensitivity of the phase quadrature to the 

changes of the multipliers’ values, but it may appear to be a 

very difficult task.  

VII. LOW-SENSITIVITY DESIGN PROCEDURE 

Taking into account all results so obtained, we propose the 

following design procedure: 

1. Obtain )(zHHT  Eq. (5) by applying the standard design 

procedure from Sect. 2. 

2. Decompose the TFs A1(z
-2

) and A2(z
-2

) to special second-

order allpass TFs and find where their poles are situated. 

3. Select (from Fig. 3) or develop new allpass sections 

realizing each couple of poles with the lowest sensitivity 

and verify this by sensitivity studies as these in Fig. 4. 

4. Investigate the overall sensitivities in the two branches 

of Fig. 2 for all possible combinations of the selected 

allpass sections realizations in order to select the best 

set.  

5. In case of a very high accuracy design, verify the selec-

tion by simulating the structure in a limited word-length 

environment (as in Fig. 6). 

We have applied this procedure for different sets of speci-

fications and it was always possible to find an implementation 

clearly outperforming all the others as the case in Fig. 6 c. 

VIII. CONCLUSION 

A new approach to improve the accuracy of the allpass 

based Hilbert transformers (realized as two parallel branches) 

through sensitivity minimizations of each individual special 

second-order allpass section in the cascade realizations of the 

two branches was proposed in this paper. The design 

procedure is simple and straightforward, without iterative and 

complicated optimization steps and is achieving accuracy of 

realizations close to the ideal case (nonquantized coefficients). 

The low sensitivities so attained permit also a very short 

coefficients word-length, a higher processing speed and lower 

power consumption. 
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