
Attacking the cloud
Vlad Andrei Poenaru1, George Suciu1, Cristian George Cernat1, Gyorgy Todoran1 and

Traian Lucian Militaru1

Abstract – Cloud is emerging as a new technology for serving
web applications. There is little literature on how DDOS affects
clouds and how other types of attacks fare versus a well designed
cloud architecture. Is cloud resilient enough to be a solution or
normal web architectures with good caching and reverse proxy is
going to be better always? This is what paper is trying to answer
by testing two architectures, SlapOS and an architecture with
nginx in front and a few web servers behind it against different
types of attacks DDOS, slowloris, RA flood attacks.

Keywords – cloud, DDOS, cloud architecture, flood attacks.

I. INTRODUCTION

In this paper we present a study about distributed denial of
service attacks (DDOS) in open source cloud platform
SlapOS, the first open source operating system for Distributed
Cloud Computing. This will include writing security testing
scripts, collecting results and automating scripts for improving
security of software deployment and configuration on cloud
nodes.

We develop a test platform for cloud computing and use it
as a case study for testing and monitoring different security
threats. We use different types of attacks and monitor
important information such as CPU load, number of processes
and intrusion level from installed sensors. The sensors will
transmit intrusion detection data from our cloud platform in
real-time, display it in our web-based visualization application
and get detailed recommendations when and where security
threats did occur - resulting in optimized automating patching.

Also we will introduce in this article SlapOS, the first open
source operating system for Distributed Cloud Computing.
SlapOS is based on a grid computing daemon called slapgrid
which is capable of installing any software on a PC and
instantiate any number of processes of potentially infinite
duration of any installed software. Slapgrid daemon receives
requests from a central scheduler the SlapOS Master which
collects back accounting information from each process.
SlapOS Master follows an Enterprise Resource Planning
(ERP) model to handle at the same time process allocation
optimization and billing. SLAP stands for “Simple Language
for Accounting and Provisioning”.

This structure has been implemented for cloud-based
automation of ERP and CRM software for small businesses
and aspects are under development under the framework of

the European research project “Cloud Consulting” [1]. We
will use our platform hosted on several servers running
Ubuntu Linux – Apache – MySQL template with current
software release. On our cloud testing environment we
provide the platform for processing information from
hundreds different sensors, enabling the analysis of security
data through a large sample of logs.

We demonstrate that open source cloud platforms are well-
developed and mature technologies offering a secure
environment for deploying a growing number of applications.

II. PROBLEM FORMULATION

SlapOS is an open source Cloud Operating system which
was inspired by recent research in Grid Computing and in
particular by BonjourGrid [2] a meta Desktop Grid
middleware for the coordination of multiple instances of
Desktop Grid middleware. It is based on the motto that
”everything is a process”. SlapOS is now an OW2 project.
Fig. 1 shows the current architecture.

Fig. 1. The SlapOS Architecture

SlapOS defines two types of servers: SlapOS Nodes and
SlapOS Master. SlapOS Nodes can be installed inside data
centers or at home. Their role is to install software and run
processes. SlapOS Master acts as a central directory of all
SlapOS Nodes, knowing where each SlapOS Node is located
and which software can be installed on each node. The role of
SlapOS Master is to allocate processes to SlapOS Nodes.

SlapOS Nodes and SlapOS Master exchange are
interconnected through the HTTP and XML based SLAP
protocol. SlapOS Master sends to each SlapOS Node a
description of which software should be installed and
executed. Each SlapOS Node sends to SlapOS Master a
description of how much resources were used during a given
period of time for accounting and billing purpose.

1The authors are with the Faculty of Electronics,
Telecommunications and Information Technology at Politehnica
University of Bucharest, Bd. Iuliu Maniu, nr. 1-3, Bucharest 060042,
Romania, E-mails: vlad.wing@gmail.com, george@beia.ro,
cernatcristi@gmail.com, todoran.gyorgy@gmail.com,
gelmosro@yahoo.com.

From a user point of view, SlapOS Node looks like an
online shop for Cloud Computing resources. The user
connects to SlapOS Master through a simplified front end,

I C E S T 2012 28-30 JUNE, 2012, VELIKO TARNOVO, BULGARIA

175

selects which software he or she needs. SlapOS Master then
allocates the software onto a SlapOS Node and provides the
connection information to the user. The allocated software can
be of any type: virtual machine, database server, application
server, web cache front end, etc.

From a developer point of view, as seen in Fig. 2, SlapOS is
a simple and universal API to create instances of any software
daemon through a programmatic interface.

Fig. 2. An example of SlapOS front-end

A simple code allows a developer to request a new instance

of a memcache server by invoking the request method of
SlapOS API. Memcache [3] is a widely adopted key-value
store protocol which is used to cache values in large scale web
infrastructure. It is usually installed and configured by system
administrators using packaging systems such RPM or DEB. In
this example, a single method call does in a few seconds what
a human system administrator would have done in few
minutes at best.

III. PROBLEM SOLUTION

SlapOS is implemented as an extension of widely adopted
open source software: GNU/Linux, Buildout [4] and
Supervisord [5] and as depicted on Fig. 3. The only new
software introduced by SlapOS is Slapgrid, a daemon in
charge of implementing the SLAP protocol on each SlapOS
Node.

Each time slapgrid receives a request from SlapOS master
to install a software, it downloads a description of that
software in the form of so-called buildout profile. It then runs
the buildout bootstrap process to install the software. Buildout
is a Python-based build system for creating, assembling and
deploying applications from multiple parts, some of which
may be non-Python-based. Buildout can be used to build C,
C++, ruby, java, perl, etc. software on Linux, MacOS,
Windows, etc.

Buildout can either build applications by downloading their
source code from source repositories (subversion, git,
mercurial, etc.) or by downloading binaries from package
repositories (rpm, deb, eggs, gems, war, etc.). Buildout excels
in particular at building applications in a way which is

operating system agnostic and to automate application
configuration process in a reproducible way.

Fig. 3. The SlapOS kernel

Each time slapgrid receives a request from SlapOS master

to run a software as a new process, it calls first buildout to
create all configuration files for that process then delegates to
supervisord the execution of the process. Supervisor is a
client/server system that allows its users to monitor and
control a number of processes on UNIX-like operating
systems. It provides a higher abstraction and flexibility than
traditional sysinit.

After some time, a typical SlapOS Node will include
multiple software applications and, for each software
application, multiple instances, each of which running in a
different process. For example, both Mediawiki and OS
Commerce could be installed onto the same SlapOS Node,
with six instances of each being run as processes. By running
software instances as processes, rather than by creating a
virtual machine for each software instance as one would do
with Amazon EC2 [6], SlapOS is able to use hardware
resources and RAM in particular more efficiently.

SlapOS Master runs ERP5 Cloud Engine, a version of
ERP5 open source ERP capable of allocating processes in
relation with accounting and billing rules. Initial versions of
SlapOS Master were installed and configured by human.
Newer versions of SlapOS Master are implemented
themselves as SlapOS Nodes, in a completely reflexive ways.
A SlapOS Master can thus allocate a SlapOS Master which in
turn can allocate another SlapOS Master, etc.:

After running security testing scripts and collecting results,
as shown in Table 1, we conclude that our open source cloud
platform delivers better performance in attacks against it.

TABLE I

Architecture SlapOS cloud Nginx Web
CPU load
(1) DDOS
(2) slowloris
(3) RA flood
attacks

(1) 85%
(2) 90%
(3) 60%

(1) 95%
(2) 99%
(3) 80%

Number of
processes
(slowloris)

200K 14K

Exploits detected 5238/5545 5211/ 5545

I C E S T 2012 28-30 JUNE, 2012, VELIKO TARNOVO, BULGARIA

176

IV. CONCLUSION

SlapOS can be described as a cloud operating system in
which “everything is a process” unlike Unix in which
“everything is a file”. If one has to manage thousands of
servers with thousands of processes, hundred different
applications in multiple different releases or versions, SlapOS
can help you a lot by making the whole security management
process well specified, automated and under control.

Therefore cloud security is shared with the processes of the
applications running on the nodes.

The second result with SlapOS is that the best way to create
a reliable and secure cloud computing system is to follow the
original principles of the Internet: distribution and simplicity.

Our system can also help keeping track of exploit
development, optimize patching for zero-days threats and to
produce log auditing to improve security risk management.

As future work we envision an early warning system of
cloud attacks that applies intrusion prevention measures based
on sensor information from different partitions on the
distributed nodes.

ACKNOWLEDGEMENT

This paper is presented as part of the project “Valorificarea
capitalului uman din cercetare prin burse doctorale
(ValueDoc)” Project co-financed from the European Social
Fund through POSDRU, financing contract
POSDRU/107/1.5/S/76909 and part of the project “Cloud
Consulting”.

REFERENCES

[1] George Suciu, Octavian Fratu, Simona Halunga, Cristian
George Cernat, Vlad Andrei Poenaru, Victor Suciu, “Cloud
Consulting: ERP and Communication Application Integration in
Open Source Cloud Systems”, 19th Telecommunications Forum
- TELFOR 2011, IEEE Communications Society, pp. 578-581,
2011

[2] Heithem Abbes, Christophe C´erin, and Mohamed
Jemni.Bonjourgrid as a decentralised job scheduler. In APSCC
08.Proceedings of the 2008 IEEE Asia-Pacific Services
ComputingConference, pages 89–94, Washington, DC,
USA,2008. IEEE Computer Society.

[3] Memcached: a free and open source, high-performance,
distributed memory object caching system.
http://memcached.org/

[4] Buildout - software build system reloaded
http://www.buildout.org/

[5] Supervisor: A Process Control System http://supervisord.org/
[6] "The impact of virtualization on network performance of

Amazon EC2 data center", Tze Ng, Guohui Wang, IEEE
INFOCOM 2010 - 029th IEEE International Conference on
Computer Communications, Vol. 29, no. 01, March 2010

I C E S T 2012 28-30 JUNE, 2012, VELIKO TARNOVO, BULGARIA

177

http://memcached.org/
http://www.buildout.org/
http://supervisord.org/

