
A comparative analysis of dynamic programming

languages for application in multi-agent systems
Ana Stankovic

1
, Dragan Stankovic

2
, and Dusan Tatic

3

Abstract – In recent years the interest for dynamic

programming languages has risen together with increasing

popularity of Web 2.0 applications. Many web frameworks based

on popular dynamic programming languages such as Rails

(developed in Ruby), Grails (Groovy) or Django (Python), were

created in order to improve the efficiency of web applications

development by promoting Agile methodology of work and

simple, maintainable code. In this paper we have analysed if the

same efficiency gains can be achieved in development of multi-

agent systems (MAS). In our analysis we have observed the

quality and size of the code written in dynamic programming

languages: Groovy, Python, and Ruby, by comparing it with the

code written in statically typed Java programming language. The

analysis is based on independent implementations of the

asynchronous dynamic programming algorithm in all four

programming languages. Obtained results can be generalized to

other MAS algorithms.

Keywords – multi-agent systems, dynamic programming

languages.

I. INTRODUCTION

Dynamically typed programming languages have recently

turned out to be really suitable for specific scenarios such as

Web development, application frameworks, game scripting,

interactive programming, rapid prototyping, dynamic aspect-

oriented programming and any kind of runtime adaptable or

adaptive software. The main benefit of these languages is the

simplicity they offer to model the dynamicity that is

sometimes required to build high context-dependent software.

Common features of dynamic languages are meta-

programming, reflection, mobility and dynamic

reconfiguration and distribution [1]. Out of special interest to

us when considering dynamically typed programming

languages in the context of multi agent systems is rapid

prototyping with additional benefit of adaptability which is

not the subject of this paper.

Russel and Norvig in [2] define artificial intelligence as a

scientific study of agents that are able to perceive the

environment and perform actions. Since the research of multi-

agents is still in its infancy, there is no universal consensus on

an unequivocal definition of the concept of agent.

Nevertheless, definition provided by Wooldridge and Jennings

[3], [4] is becoming widely accepted by a growing number of

researchers, which is why it can be regarded as being one of

the most complete definitions. According to this definition, an

agent is:

“a computer system that is situated in some environment,

and that is capable of autonomous action in this environment

in order to meet its design objectives”.

Interest in studying multi-agent systems usually stems from

the interest in artificial (software or hardware) agents, such as

the agents living on the Internet, for example. Examples of

those agents are trading agents, game-playing agents that

assist or replace human players in multi-player games,

autonomous robots in multi-robot environments and the like.

Software agents can be regarded as a natural extension of

the concept of software objects. Object-oriented programming

has introduced abstraction entities – objects to the structural

programming paradigm. Similarly, agent-based programming

introduces new entities – agents, which, in contrast to objects,

have an independent execution thread. Therefore, in

comparison to objects, agents have the ability of acting in a

goal-directed manner, for example, by interacting with other

agents, reading sensors or sending commands to effectors,

while objects only passively respond to procedure calls. In

short, it can be stated that agents represent intelligent,

adaptable software applications, designed with the purpose of

meeting different, user-defined requirements.

In most of the cases, even separate action of agents can be

useful. Nevertheless, agents achieve their fullest potential by

interacting with other agents, thus making multi-agent

systems. Most of these systems are heterogeneous because

they consist of different types of agents that have different

functions within the observed system. Agents act either in

synergy with the purpose of achieving the common goal or

competitively with the purpose of achieving contradictory

goals.

What follows are detailed definitions of important concepts

associated with agents and multi-agent systems. After that,

comparison of one simple MAS-used search algorithm

implemented in dynamic programming languages Ruby,

Python and Groovy with statically typed Java programming

language will be performed.

II. CONCEPT OF AN INTELLIGENT AGENT

It has already been pointed out that there is no universally

accepted definition of the term agent. Debates concerning this

issue are still under way. In fact, while there is a general

consensus that autonomy is something that is always

associated with agents, not all the details have been cleared

up. Perhaps the main reason for which one universally

1Ana Stankovic is with the Faculty of Information Technologies at

Metropolitan University, Tadeusa Koscusca 63, 11000 Belgrade,

Serbia, E-mail: ana.stankovic@metropolitan.ac.rs
2Dragan Stankovic is with the Faculty of Technical Sciences,

University of Pristina, Kneza Milosa No. 7, Kosovska Mitrovica,

Serbia, E-mail: sfsgagi@gmail.com
3Dusan Tatic is with the Faculty of Electronic Engineering,

University of Nis, Aleksandra Medvedeva 14, 18000 Nis, Serbia, E-

mail: dusan@dragongroup.org

I C E S T 2012 28-30 JUNE, 2012, VELIKO TARNOVO, BULGARIA

186

accepted definition is difficult to find lies in the fact that

agents are used for finding solutions to problems within

various domains. Therefore, for some applications, the ability

of agents to learn on the basis of their previous experience is

very important. However, for some other applications learning

is not only unnecessary but also undesirable at times (an

example supporting these facts is found in the air-traffic

control system; the passengers would probably not like the

situation in which the system modified flights schedule at run

time on the basis of previously learned facts).

Agents can be regarded as an approach to structuring and

development of software that offers certain advantages and

that is suitable for certain types of applications (some papers

see agents as evolutionary in relation to objects) [5]. Agents’

characteristics to reduce the interdependence of application

components can represent their most advantageous

characteristics. Agents are autonomous, which can be

regarded as some kind of encapsulation [5]. While objects

have their own methods that are controlled by external

entities, agents do not allow external entities to control them.

When an agent gets a message, being autonomous, it decides

what is to be done with that message by itself.

Interdependence of application components is reduced not

only by the agents’ autonomy, but also by their robustness,

reactivity and proactiveness. For example, when an agent

enters goal-directed phase, agent itself is responsible for the

process of realization of that goal. It is not necessary to

perform constant supervision and checking. Analogously,

object can be regarded as a reliable employee that has no

initiative or sense of responsibility; supervision of that

employee requires increased level of communication. On the

other hand, agent can be regarded as an employee that takes

initiative and has the sense of responsibility. Therefore,

supervision of that employee does not require increased level

of communication, which is why it can be stated that there

exists lower level of interdependence.

Reduced interdependence leads towards software systems

that are more modular, more decentralized and more easily

changeable. This resulted in the fact that agents started being

used in wide specter of applications, especially in applications

that are regarded as open systems, that is, applications which

have been designed and written by different authors without

their mutual communication. Of course, this entails the

introduction of certain standards. Examples of these systems

include semantic web and grid computing.

The fact that some agents are proactive and reactive makes

their mode of problem solving similar to human. That feature

resulted in a great number of applications in which agents are

used as substitutes for humans within some limited domains.

One such example is an application in which software agents

are used to replace human pilots in military simulations [6].

Another example are computer games. The game Black &

White uses agents that are based on BDI (Belief-Desire-

Intention) model. Another field within which agents have

been practically applied is the film industry. Producers of the

film Lord of the Rings used the software package Massive to

generate armies of orcs, elves and humans. Each individual

character was modeled as an agent. Other types of

applications where agents show their advantages include

intelligent assistants, e-trade, production and modeling of

business processes [7], [8].

III. DYNAMIC PROGRAMMING LANGUAGES

In the last few years, the development of Web 2.0

applications has brought about the increase of interest in

dynamically typed programming languages. Great number of

frameworks that enable efficient development of web

applications and promote Agile application development

methodology have been developed. Terms such as DRY

(don’t repeat yourself), KISS (keep it simple but not simpler)

and convention over configuration have been adopted by the

programmers and these stand for the major directions the

programmers follow in the process of application

development. Growing interest in programming languages

that increase productivity of web developers has resulted in

further expansion of their use in the desktop applications

domain making languages such as Ruby, Python and Groovy

extremely popular nowadays. What follows is a short

description of these programming languages and their

important features that improve efficiency of rapid

prototyping of multi-agent systems algorithms.

A. Ruby

Ruby is a dynamic programming language which is

characterized by a complex but very expressive grammar and

a good core class library with a rich and powerful API. Ruby

is based on elements of Lisp, Smalltalk and Perl, but its

grammar is such that C and Java Programmers find it easier to

learn. Ruby is a programming language that is completely

object-oriented, but it is also suitable for procedural and

functional programming styles . Ruby includes powerful

metaprogramming mechanisms and can be used for the

creation of new languages which are suitable for certain

domains or for the creation of DSLs (Domain Specific

Languages). [9]

B. Python

Python is a dynamic, object-oriented programming

language which can be used for various forms of software

development. It offers strong support for integration with

other languages and tools, huge range of standard libraries and

can be learned in a few days. Many programmers who had

had experience with Python programming reported substantial

productivity gains and easier and more maintainable code

development. [10]

C. Groovy

Groovy is a developing dynamically typed programming

language for the Java Virtual Machine. It builds upon the

strength of Java but it also possesses additional features that

are inspired by languages such as Python, Ruby and

Smalltalk. It supports DSLs and test driven development. Its

I C E S T 2012 28-30 JUNE, 2012, VELIKO TARNOVO, BULGARIA

187

main advantage lies in the fact that it smoothly integrates with

Java objects and libraries. In fact, “Groovy is Java and Java is

Groovy”. Groovy is the second referent language for Java

platform (Java programming language being the first), which

further explains its relation with Java [11].

D. Support for DSL creation

Common feature of all languages that have been described

so far is that they can create DSLs, that is, new programming

languages that enable more efficient development of

applications for specific domains. This feature is important

because it enables, for example, the creation of a specific DSL

for the domain of multi-agent systems, which, in turn, enables

more efficient modeling and development of multi-agent

applications without losing the interoperability of the code

written in that new DSL with standard libraries.

IV. DISTRIBUTED PATH FINDING PROBLEM

Majority of problems that occur within multi-agent systems

are focused on how to meet some global constraints in a

distributed way, that is, how the agents can optimize some

objective function in a distributed manner. In most cases, it is

achieved with the help of four families of techniques and

specific problems. Those techniques are:

- Distributed dynamic programming (applied here to the

path planning problem)

- Distributed solutions for Markov Decision Problems

(MDP – Markov Decision Problems)

- Algorithms of optimization algorithms of economic

functions (matching and scheduling problems)

- Coordination on the basis of social laws and conventions

(example of traffic regulations)

With the purpose of illustration, distributed dynamic

programming will be applied to the path planning problem.

Path planning problem consists of a weighted directed graph

with a set of n nodes N, directed links L, a weight function w:

LR
+
 and two nodes s, t N. The goal is to find a directed

path from s to t that will have minimal possible total weight.

Generally speaking, a set of goal nodes TN can be

considered, and the shortest path from s to any of the goal

nodes tT can be looked for.

This kind of abstract framework can be applied in various

domains. It can certainly be applied in cases of some specific

networks (for example, transportation or telecommunication

network). Nevertheless, it can be applied to other problems as

well. For example, in a planning problem the nodes can be

states of the world and the arcs can be the actions that the

agent performs. In that case, the weights stand for the cost of

each action (for example, the time needed for the action) (37)

(38).

V. ASYNCHRONOUS DYNAMIC PROGRAMMING

The problem of finding the best path is the problem that has

been thoroughly studied in computer science. Distributed

solution will be considered here, in which each node performs

a local computation with insight only into the state of

neighboring nodes. The principle of optimality underlies the

solutions that will be illustrated: “if node x belongs to the

shortest path from s to t, then the part of the path from s to x

(or from x to t) must also be the shortest path between s and x

(that is, x and t). This principle enables an incremental divide-

and-conquer procedure, also known as dynamic programming.

 Let h*(i) represent the shortest distance from any node i to

the goal node t. In that case, the shortest distance from i to t

via node j neighboring i is shown as: f*(i, j) = w(i, j) + h*(j),

and h*(i)=minj f*(i,j). Having these facts in focus,

ASYNCHDP algorithm has each node perform the procedure

shown in Fig. 1. Within this procedure, each node i maintains

a variable h(i) that stands for an estimate of h*(i).

It can be proved that ASYNCHDP procedure always

converges to the true values, that is, that h will converge to h*.

In this case, convergence will require additional step for each

node in the shortest path, which means that in the worst case

convergence will require n iterations. However, this is not so

good for realistic problems. Not only will convergence be

slow, but this procedure also assumes the existence of agent

for each node. In typical search spaces it is not possible to

enumerate all nodes in an efficient way and allocate each of

them a separate process. (For example, chess has

approximately 10
120

 positions). For that reason, programmers

often turn to heuristic versions of the procedure that require

smaller number of agents.

VI. RESULTS

We have implemented the above mentioned algorithm in

Java, Groovy, Python, and Ruby and used the number of lines

of code as a measure for evaluating their rapid prototyping

abilities. It can be further discussed whether the number of

lines of code is a measure that can be suitable for the estimate

of efficiency of some programming language in a specific

domain (multi-agent systems). The lines of code will depend

on developer’s experience with certain programming language

and the applied code style rules. The code that we used here

procedure ASYNCHDP (node i)

if i is a goal node then

h(i) 0

else

initialize h(i) arbitrarily (e.g. to or 0)

repeat {

 forall neighbors j do

 f(j) w(i, j) + h(j)

 h(i) minj f(j)

}

Fig. 1. Asynchronous dynamic programming algorithm

I C E S T 2012 28-30 JUNE, 2012, VELIKO TARNOVO, BULGARIA

188

and the way it was generated are sufficient for the process of

drawing general conclusions. One such conclusion is that

there is a big difference between statically typed Java and

dynamically typed languages that were considered here. The

graph shown in Fig. 2 illustrates this difference in the best

possible way.

VII. CONCLUSION

In the domain of rapid prototyping of MAS algorithms

dynamically typed programming languages clearly have

advantages over classic statically typed languages, such as

Java. These advantages, as we have shown, are noticeable

even in the simplest examples. Apart from the advantages that

are reflected in reduced number of code lines and higher

productivity, big advantage is also seen in the increased code

readability and subsequent easier influx of broad community

of developers in what was previously done, as well as in more

efficient code maintenance and iterative improvement.

The conclusion that can be drawn is that dynamically typed

programming languages should be given preference over

statically typed languages whenever possible.

The future will probably bring increased interest in

functional programming languages in the domain of multi-

agent systems as well. Environments and tools with the most

efficient support and broadest community of users will

become dominant while the remaining projects will disappear

in time.

ACKNOWLEDGEMENT

The work presented here was supported by the Serbian

Ministry of Education and Science (projects III44006 and

III42006).

REFERENCES

[1] F. Ortin, “Type Inference to Optimize a Hybrid Statically and

Dynamically Typed Language”, The Computer Journal, vol. 54,

No. 11, 2011

[2] S. Russell, P. Norvig, “Artificial Intelligence - A Modern

Approach”, Prentice Hall, 2009.

[3] M. Wooldridge, “An Introduction to MultiAgent Systems”,

Chichester : John Wiley & Sons, 2002.

[4] M. Wooldridge, N. Jennings, “Intelligent Agents: Theory and

Practice”, Knowledge Engineering Review, 10(2): pp. 115–152,

1995.

[5] M. Wooldridge, “Intelligent Agents. In: G. Weiss (Ed.),

Multiagent Systems. A Modern Approach to Distributed

Artificial Intelligence”, The MIT Press, Cambridge,

Massachusetts, pp. 27-78, 1999

[6] G. Tidhar, C. Heinze, M. Selvestrel, “Flying together: modelling

air mission teams”, Applied Intelligence. 1998, Vol. 8, 3, pp.

195–218.

[7] W. Shen, D. Norrie, “Agent-based systems for intelligent

manufacturing: a state-of-the-art survey”, Knowledge and

Information Systems, An International Journal. 1999, Vol. 1, 2,

pp. 129–156.

[8] N. Jennings et al., “Autonomous agents for business process

management”, International Journal of Applied Artificial

Intelligence. 2000, Vol. 14, 2, pp. 145–189.

[9] D. Flanagan, Y. Matsumoto, “The Ruby Programming

Language”, O'Reilly Media, 2008.

[10] [Online] http://www.python.org/

[11] [Online] http://groovy.codehaus.org/

196

84 78 88

0

100

200

300

Java Groovy Python Ruby

LoC

Fig. 2. Lines of code (LoC) for the complete test application

that relies on AsynchDp algorithm for different programming

languages

I C E S T 2012 28-30 JUNE, 2012, VELIKO TARNOVO, BULGARIA

189

http://www.python.org/
http://groovy.codehaus.org/

