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Abstract – In group theory and Fourier analysis on finite 

Abelian groups, the group characters are an essential concept.  

In many applications, as for instance, spectral processing of logic 

functions (binary or p-valued), it is often required to construct 

the table of group characters for the specified group. This can be 

a computationally demanding task, both in terms of space and 

time, when dealing with large groups, since the group characters 

are viewed in matrix notation as rows of (pm ×××× pm) matrices, 

where p is the cardinality of the set where the given logic 

function and its variables take values, and m is the number of 

variables. The graphics processing unit (GPU), as a highly 

parallel computational platform, may facilitate this complex 

task.  

This paper discusses the application of the GPU processing to 

the construction of tables of group characters for finite Abelian 

groups represented as a direct product of cyclic subgroups of 

order p. We exploit the Kronecker product structure of these 

tables permitting redistribution of the related computing tasks 

over GPU resources. Experimental results confirm that the 

presented solution offers a considerable speed-up over the C/C++ 

implementation of the same character construction method 

processed on the central processing unit (CPU). 
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I. INTRODUCTION 

Abstract harmonic analysis is a mathematical discipline 

that evolved from the classical Fourier analysis by the 

replacement of the real group R with an arbitrary locally 

compact Abelian or compact non-Abelian group [3, 6, 9, 14, 

15]. This implies the transition from the exponential 

functions, used in classical Fourier analysis and viewed as the 

group characters of R, to the group characters, in the case of 

Abelian groups, and the group representations, in the case of 

non-Abelian groups [6, 9]. Abstract harmonic analysis 

provides foundations for the formulation of many methods 

with significant applications in electrical engineering and 

computer science [9, 16, 17, 18, 19]. In these methods, it is 

often required to construct the group characters of various 

Abelian groups and use them in further computations. With 

that motivation, this paper presents a method for an efficient 

construction of group characters of finite Abelian groups 

using the graphics processing unit (GPU). This choice of 

hardware is made due to the fact that contemporary GPUs are 

highly parallel computing engines which can simultaneously 

serve as programmable graphics processors and scalable 

parallel computational platforms [1, 8, 13]. For a given group 

G, the construction of group characters can be expressed in 

terms of the Kronecker product of characters of its subgroups 

of smaller orders.  In this formulation, the algorithm for the 

construction of group characters expresses a substantial 

inherent parallelism and, therefore, the GPU is a natural 

choice of hardware for the implementation of this algorithm. 

The experimental comparisons of the proposed 

implementation on the GPU and the C/C++ implementation of 

the same algorithm processed on the central processing unit 

(CPU) confirm this assumption.   

The rest of the paper is organized as follows. The 

background theory is introduced in Section 2. In Section 3, we 

propose a mapping of the algorithm for the construction of 

group characters to the GPU and discuss the details of the 

respective programming implementation. The experiments are 

discussed in Section 4. We close the paper with Section 5, by 

presenting some conclusions and possible directions for 

further research. 

II. BACKGROUND THEORY 

In this section, we give a brief introduction to the 

theoretical background of the paper. For more detailed 

discussion of these topics, we recommend classical works 

such as [3, 15, 17], or more recent references [6, 9, 14]. 

We consider finite Abelian groups of the 

form ({0,1,..., 1} , )m m

p pG C p= = − ⊕ , where Cp is the cyclic 

group of order p, and p⊕  is the componentwise addition 

modulo p.  

The group characters ( ) ( )p zωχ , z = 0, 1,..., p
m
-1, of the group 

G are defined as [9, 16, 17]: 
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Example 1 The group character tables, for the cyclic 

groups Cp of orders p = 2, 3, and 4, are given in Table I, where 

1i = − , 1 0.5 (1 3) exp(2 / 3)e i iπ= − ⋅ − = , and 2 1e e∗= =  

0.5 (1 3) exp(4 / 3)i iπ− ⋅ + = . 
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TABLE I CHARACTER TABLES OF CYCLIC GROUPS                 

Cyclic 

group 
C2 C3 C4 

Character 

table 

1 1

1 1

 
 − 

 
1 2

2 1

1 1 1

1

1

e e

e e

 
 
 
  

 

1 1 1 1

1 1

1 1 1 1

1 1

i i

i i

 
 − − 
 − −
 

− − 

 

The group G= m

pC  is the direct product of m elementary 

cyclic subgroups Cp. It follows, see for instance [3, 6, 15], that 

the character table of the group G is the Kronecker product of 

m character tables of its cyclic subgroup Cp. 

Example 2 For the group 2

3C , the character table can be 

computed as the Kronecker product of two character tables of 

its cyclic subgroup C3. In this way, only the character table of 

C3 is computed through (1) and the character table for 2

3C  is 

generated as:    

[ ] [ ]2

3 3 3 1 2 1 2

2 1 2 1

1 1 1 1 1 1

1 1

1 1

C C C e e e e

e e e e

   
     = ⊗ = ⊗ =     
      

  

1 2 1 2 1 2

2 1 2 1 2 1

1 2 1 1 2 2 1 2

2 1 2 1 2 1

1 2 2 1 2

2 1 2 1

1 1 1 1 1 1 1 1 1

1 1 1 1 1 1

1 1 1

1 1 1 1 1 1 1 1 1

1 1 1 1

1 1 1

1 1 1 1 1 1

1 1 1

1 1

e e e e e e

e e e e e e

e e e e e e e e

e e e e e e

e e e e e

e e e e

     
     ⋅ ⋅ ⋅     
          

     
     ⋅ ⋅ ⋅     
          

   
  ⋅ ⋅  
     

1 1 2

2 1

1 1 1

1

1

e e e

e e

 
 
 
 
 
 
 
 
 
 

  
   ⋅   
     

.   (3) 

This property of the character table will be exploited in the 

mapping of the computation of the character table to the GPU.  

III. GPU CONSTRUCTION METHOD  

A. GPU Computing 

The technique of performing general-purpose algorithms on 

graphics processors, known as GPGPU (general-purpose 

computing on GPUs) or GPU computing, has recently become 

a subject of a fast growing research interest and practical 

application [1, 13].  

This interest is mainly the result of two factors. First is the 

evolution of the GPU hardware towards a scalable, 

programmable, and highly parallel computing platform [1, 

13], and the second is the development of the Nvidia CUDA 

[13] and OpenCL (Open Computing Language) [10] 

programming frameworks, based on the C/C++ language, 

which made the immense GPU computational resources more 

accessible. For the implementation purposes, we use OpenCL, 

since it allows the development of the code that is both 

accelerated and portable across heterogeneous processing 

platforms (GPUs, FPGAs, DSPs) [8, 10].  

B. Algorithm Mapping  

The key task in porting algorithms to the GPU is their 

efficient mapping to the SPMD (single program, multiple 

data) processing model and the multi-level memory hierarchy 

of GPUs [1, 2, 8, 12, 13]. In the GPU SPMD model, a single 

data parallel function called a kernel is executed over a stream 

of data by many threads in parallel. A thread is the smallest 

execution entity and represents a single instance of the kernel. 

The execution of the kernel is controlled by the host program 

processed by the CPU. 

The mapping of the algorithm for the construction of group 

character tables to the GPU is explained using Example 2.  

The matrix 2

3C    in (3) has the following block structure:  

00 01 02

2

3 10 11 12

20 21 22

B B B

C B B B

B B B

 
   =   
  

.  (4) 

Blocks Bx,y (x, y = 0, 1, 2) are the character tables for C3 

multiplied by the elements of the matrix [C3]. Therefore, each 

block can be represented as:    

 

00 01 02

, , 3 , 10 11 12 , ,

20 21 22

[ ] ,x y x y x y x y i j

a a a

B c C c a a a c a

a a a

 
   = ⋅ = ⋅ = ⋅   
  

 (5) 

where { }, , 1 2, 1, ,x y i jc a e e∈ , x, y, i, j = 0,1,2. 

To each block we assign a thread t = (x, y, ai,j), x, y, i, j = 0, 

1, 2. Each thread performs a multiplication of [C3] by a scalar, 

as in (5). Threads are organized into a two-dimensional (x, y) 

array corresponding to the matrices to be computed. Fig. 1 

represents the mapping of the character table computations to 

the GPU threads.  Each thread processes a single block, which 

is indicated by a different color in Fig. 1. 

For the group 2

3C  in Example 2, we have nine threads in the 

first and only step of the algorithm (since this example 

involves only one Kronecker product), each performing the 

operation from (5) in parallel. In this case, indices of memory 

locations, where a thread t(x, y, ai,j) stores the first element 

( , 0,0x yc a⋅ ) of the block, are computed as: 

            33 3startElement x y← ⋅ + ⋅ .                       (6) 

 

Figure 1. Mapping of the computations to the GPU threads for 
Example 2.  
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Indices of memory locations for the rest of the elements 

( , ,x y i jc a⋅ , x, y, i, j = 0, 1, 2, except for the case i = j = 0) in a 

computed block are determined as: 
23nextElement startElement i j← + ⋅ + .           (7) 

The results of the computations are stored in the GPU 

global memory which has a linear layout. Formulas for the 

computation of the memory location indices ((6) and (7)) lead 

to the GPU global memory access pattern which is, for 

Example 2, depicted in Fig. 2. Coloring of the blocks and the 

memory locations in this figure corresponds to the thread 

coloring in Fig. 1.   

In the general case, in the k
th

 step of the algorithm, we 

perform the Kronecker product of a (p
k 

× p
k
) matrix by the    

(p × p) matrix, and the result is a (pk+1 × pk+1) matrix.  

Therefore, there are p
2
 active threads in the first step of the 

algorithm, while in the k
th

 step, there are p
2k 

active threads. 

The index of the GPU memory location for the first entry 

( , 0,0x yc a⋅ ) of the block is determined as: 

2 ,kstartElement x p y p+← ⋅ + ⋅           (8) 

The indices of the memory locations for the other elements 

( , ,x y i jc a⋅ , i, j = 0, 1,…, p-1, except for the case i = j = 0)) in a 

block are:   
1knextElement startElement i p j p+← + ⋅ + ⋅ .         (9) 

C. Features of the Mapping 

The proposed method for computing the character tables 

has the following features: 

1. The character table is stored as a vector of length p
2m

 

obtained by the concatenation of rows of [
m

pC ]. This 

allows reading the values of characters directly without 

any reordering. 

2. Elements of [ m

pC ] computed by threads with the same 

first index and the successive second index are stored 

in neighboring memory locations. This automatically 

allows memory coalescing, due to which multiple data 

accesses to the GPU global memory are performed as a 

single memory transaction [2, 12]. 

D. Algorithm Implementation 

A GPGPU program consists of two parts: 

1. Host program, which executes on the CPU and creates 

and controls the context for the execution of kernels as 

well as allocates and transfers data to the GPU 

memory.   

2. Device program, which is processed on the GPU and 

implements the SPMD kernels. 

In the presented OpenCL implementation, the host program 

determines the character table for the cyclic subgroup Cp 

through (1).  Notice that not all of the characters of Cp need to 

be computed by using (1), since, e.g.,
p i ie e

∗
− = , for i = 1, 2, 

…, / 2 1p −   . Thus, we compute half of the rows of the 

character table for Cp, while other rows are determined by 

using this property. 

The host allocates GPU global memory space for two (p
m 

× 

pm) matrices that are used as buffers to store the results of the 

application of the Kronecker product. This minimizes the 

communication between the host and the device, which is a 

bottleneck in the GPU computing [8, 12, 13]. Note that we 

have to reserve the space for (pm × pm) matrices at the 

beginning of the computation, since the size of the GPU 

buffers cannot be changed after their creation, otherwise, we 

would have to create buffers and transfer data between the 

host and the device for each step of the algorithm, as the 

resulting intermediate matrices increase in size. To minimize 

the memory bandwidth occupation on the GPU itself, we use 

the technique of buffer swapping [7]. For odd-numbered 

steps, the first matrix is used as the input to the kernel and the 

second matrix as the output. For even-numbered steps, the 

order is reversed.  

The character table for Cp is stored in a (p × p) matrix and it 

is used as the second operand in the Kronecker product 

operation in each step. Since it is of a small size, we keep it in 

the constant GPU memory, which is cached. This allows 

much faster access and leads to improved program 

performance [12].   

The Algorithm 1 presents a pseudo-code for the device 

program. Code in lines 2 and 6 implements (8) and (9), 

respectively. Since the characters of finite Abelian groups are 

complex numbers, elements of 
k

pC   , pC   , and 
1k

pC
+    are 

stored in the GPU buffers using the float2 OpenCL vector 

data type [10]. The first component in the vector variable 

stores the real part and the second component the imaginary 

part of the complex number.   

 
Figure 2. GPU global memory access pattern for Example 2.  

Algorithm 1 Pseudo-code for the device program 

1: x, y ← acquire thread indices in the two-dimensional grid 

2: startElement ← x · pk+2 + y · p 

3: adr1 ← x · pk  + y 

4: for i = 0 to p-1 do 

5:    for j = 0 to p-1 do 

6:       nextElement ← startElement + i · pk+1 + j   

7:       adr2 ← i · p  + j 

8:      1k

pC +   (nextElement).re ← k

pC   (adr1).re · pC   (adr2).re –  

                                                      k

pC   (adr1).im · pC   (adr2 ).im 

9:      1k

pC +   (nextElement).im ← k

pC   (adr1).re · pC   (adr2).im +    

                                                       k

pC   (adr1).im · pC   (adr2 ).re 
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TABLE II SPECIFICATION OF TEST PLATFORMS 

Platform A B 

CPU 
AMD Phenom II N830 

triple-core  (2.1GHz) 

Intel Core i7-920  

quad-core (2.66GHz) 

RAM 4GB DDR3 1066MHz 12GB DDR3-2000 

OS  Windows 7 Ultimate (64-bit)  

IDE MS Visual Studio 2010 Ultimate 

SDK AMD APP 2.6 Nvidia GPU Computing 4.0 

GPU 

engine speed 

memory 

processors 

ATI Radeon 5650 

650 MHz 

1 GB GDDR3 800 MHz 

80 

Nvidia GTX 650 Ti 

900 MHz 

1 GB GDDR5 4.2 GHz 

384 

 

I. EXPERIMENTAL RESULTS 

The experiments reported in this section are performed 

using two hardware platforms, labeled A and B, respectively, 

and specified in Table II. The GPU kernel performance 

analysis is done through the application of AMD APP Profiler 

2.4 (for A) and Nvidia Parallel Nsigth 2.1 (for B), in 

accordance with instructions provided in [2, 12]. 

The referent C/C++ implementation uses the complex data 

type from the Standard Template Library (STL) for the 

representation of the values of group characters. This data 

structure best corresponds to the float2 OpenCL vector data 

type [10] used for the same purpose in the GPU 

implementation. The referent C/C++ implementation is 

compiled for the x64 platform using the MS C++ compiler set 

to the maximum level of performance-oriented optimizations. 

The results of the experiments performed on both test 

platforms for the construction of the character table for the 

groups
3

mC , m = 1, 2,…, 8, are presented in Fig. 3. Notice that 

for p = 3 and m = 8, the size of the character table is pm × pm = 

3
8 

× 3
8 

= 6561 × 6561, and, therefore, to complete the task, we 

have to compute and store 43 046 721 complex numbers. The 

OpenCL implementation processed on the GPUs outperforms 

the referent CPU C/C++ implementation on both platforms 

and for all values of m used in the experiments. The speed-up 

is almost constant throughout the range for m, and it goes up 

to a factor of 7.8× , on the test platform A, and up to a factor 

of 8.2× on the platform B.  

II. CONCLUSIONS 

In this paper, we propose a method for the construction of 

characters of finite Abelian groups of the 

form ({0,1,..., 1} , )m m

p pG C p= = − ⊕ , using the graphics 

processing unit (GPU) as the computational platform. We 

identify the sources of the parallelism available in the 

algorithm for construction of the character table for G 

formulated in terms of the Kronecker product. Based on this 

analysis, we devise a mapping of the computations to the 

SPMD processing model of the GPU and develop an OpenCL 

implementation of the algorithm. The experimental results 

obtained through the comparison of the proposed solution and 

the referent C/C++ implementation of the same algorithm 

show speed-ups of up to 7.8×  and 8.2× , depending on the 

platform, when using the GPU and, thus, confirm the validity 

of the proposed approach. 
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Figure 3. Computation times for the groups

3

mC , m = 1, 2,…, 8, on 

CPUs and GPUs for the test platforms specified in Table II. 
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