
GPU Accelerated Construction of Characters of

 Finite Abelian Groups
Dušan B. Gajić

1
 and Radomir S. Stanković

1

Abstract – In group theory and Fourier analysis on finite

Abelian groups, the group characters are an essential concept.

In many applications, as for instance, spectral processing of logic

functions (binary or p-valued), it is often required to construct

the table of group characters for the specified group. This can be

a computationally demanding task, both in terms of space and

time, when dealing with large groups, since the group characters

are viewed in matrix notation as rows of (pm ×××× pm) matrices,

where p is the cardinality of the set where the given logic

function and its variables take values, and m is the number of

variables. The graphics processing unit (GPU), as a highly

parallel computational platform, may facilitate this complex

task.

This paper discusses the application of the GPU processing to

the construction of tables of group characters for finite Abelian

groups represented as a direct product of cyclic subgroups of

order p. We exploit the Kronecker product structure of these

tables permitting redistribution of the related computing tasks

over GPU resources. Experimental results confirm that the

presented solution offers a considerable speed-up over the C/C++

implementation of the same character construction method

processed on the central processing unit (CPU).

Keywords – Abstract harmonic analysis, finite Abelian groups,

group characters, Kronecker product, GPU computing,

OpenCL.

I. INTRODUCTION

Abstract harmonic analysis is a mathematical discipline

that evolved from the classical Fourier analysis by the

replacement of the real group R with an arbitrary locally

compact Abelian or compact non-Abelian group [3, 6, 9, 14,

15]. This implies the transition from the exponential

functions, used in classical Fourier analysis and viewed as the

group characters of R, to the group characters, in the case of

Abelian groups, and the group representations, in the case of

non-Abelian groups [6, 9]. Abstract harmonic analysis

provides foundations for the formulation of many methods

with significant applications in electrical engineering and

computer science [9, 16, 17, 18, 19]. In these methods, it is

often required to construct the group characters of various

Abelian groups and use them in further computations. With

that motivation, this paper presents a method for an efficient

construction of group characters of finite Abelian groups

using the graphics processing unit (GPU). This choice of

hardware is made due to the fact that contemporary GPUs are

highly parallel computing engines which can simultaneously

serve as programmable graphics processors and scalable

parallel computational platforms [1, 8, 13]. For a given group

G, the construction of group characters can be expressed in

terms of the Kronecker product of characters of its subgroups

of smaller orders. In this formulation, the algorithm for the

construction of group characters expresses a substantial

inherent parallelism and, therefore, the GPU is a natural

choice of hardware for the implementation of this algorithm.

The experimental comparisons of the proposed

implementation on the GPU and the C/C++ implementation of

the same algorithm processed on the central processing unit

(CPU) confirm this assumption.

The rest of the paper is organized as follows. The

background theory is introduced in Section 2. In Section 3, we

propose a mapping of the algorithm for the construction of

group characters to the GPU and discuss the details of the

respective programming implementation. The experiments are

discussed in Section 4. We close the paper with Section 5, by

presenting some conclusions and possible directions for

further research.

II. BACKGROUND THEORY

In this section, we give a brief introduction to the

theoretical background of the paper. For more detailed

discussion of these topics, we recommend classical works

such as [3, 15, 17], or more recent references [6, 9, 14].

We consider finite Abelian groups of the

form ({0,1,..., 1} ,)m m

p pG C p= = − ⊕ , where Cp is the cyclic

group of order p, and p⊕ is the componentwise addition

modulo p.

The group characters () ()p zωχ , z = 0, 1,..., p
m
-1, of the group

G are defined as [9, 16, 17]:

1

()

1

0

2
() exp

m
p

m s s

s

z i z
p

ω

π
χ ω

−

− −
=

 
=  

 
∑ , (1)

where 1i = − , , {0,1,..., 1}s sz pω ∈ − , and

1 1
1 1

0 0

,
m m

m s m s

s s

s s

p z z pω ω
− −

− − − −

= =

= =∑ ∑ . (2)

Example 1 The group character tables, for the cyclic

groups Cp of orders p = 2, 3, and 4, are given in Table I, where

1i = − , 1 0.5 (1 3) exp(2 / 3)e i iπ= − ⋅ − = , and 2 1e e∗= =

0.5 (1 3) exp(4 / 3)i iπ− ⋅ + = .

1Dušan B. Gajić and Radomir S. Stanković are with the University

of Niš, Faculty of Electronic Engineering, Aleksandra Medvedeva

14, 18000 Niš, Serbia, E-mails: dule.gajic@gmail.com,

radomir.stankovic@gmail.com.

I C E S T 2012 28-30 JUNE, 2012, VELIKO TARNOVO, BULGARIA

190

TABLE I CHARACTER TABLES OF CYCLIC GROUPS

Cyclic

group
C2 C3 C4

Character

table

1 1

1 1

 
 − 

1 2

2 1

1 1 1

1

1

e e

e e

 
 
 
  

1 1 1 1

1 1

1 1 1 1

1 1

i i

i i

 
 − − 
 − −
 

− − 

The group G= m

pC is the direct product of m elementary

cyclic subgroups Cp. It follows, see for instance [3, 6, 15], that

the character table of the group G is the Kronecker product of

m character tables of its cyclic subgroup Cp.

Example 2 For the group 2

3C , the character table can be

computed as the Kronecker product of two character tables of

its cyclic subgroup C3. In this way, only the character table of

C3 is computed through (1) and the character table for 2

3C is

generated as:

[] []2

3 3 3 1 2 1 2

2 1 2 1

1 1 1 1 1 1

1 1

1 1

C C C e e e e

e e e e

   
     = ⊗ = ⊗ =     
      

1 2 1 2 1 2

2 1 2 1 2 1

1 2 1 1 2 2 1 2

2 1 2 1 2 1

1 2 2 1 2

2 1 2 1

1 1 1 1 1 1 1 1 1

1 1 1 1 1 1

1 1 1

1 1 1 1 1 1 1 1 1

1 1 1 1

1 1 1

1 1 1 1 1 1

1 1 1

1 1

e e e e e e

e e e e e e

e e e e e e e e

e e e e e e

e e e e e

e e e e

     
     ⋅ ⋅ ⋅     
          

     
     ⋅ ⋅ ⋅     
          

   
  ⋅ ⋅  
     

1 1 2

2 1

1 1 1

1

1

e e e

e e

 
 
 
 
 
 
 
 
 
 

  
   ⋅   
     

. (3)

This property of the character table will be exploited in the

mapping of the computation of the character table to the GPU.

III. GPU CONSTRUCTION METHOD

A. GPU Computing

The technique of performing general-purpose algorithms on

graphics processors, known as GPGPU (general-purpose

computing on GPUs) or GPU computing, has recently become

a subject of a fast growing research interest and practical

application [1, 13].

This interest is mainly the result of two factors. First is the

evolution of the GPU hardware towards a scalable,

programmable, and highly parallel computing platform [1,

13], and the second is the development of the Nvidia CUDA

[13] and OpenCL (Open Computing Language) [10]

programming frameworks, based on the C/C++ language,

which made the immense GPU computational resources more

accessible. For the implementation purposes, we use OpenCL,

since it allows the development of the code that is both

accelerated and portable across heterogeneous processing

platforms (GPUs, FPGAs, DSPs) [8, 10].

B. Algorithm Mapping

The key task in porting algorithms to the GPU is their

efficient mapping to the SPMD (single program, multiple

data) processing model and the multi-level memory hierarchy

of GPUs [1, 2, 8, 12, 13]. In the GPU SPMD model, a single

data parallel function called a kernel is executed over a stream

of data by many threads in parallel. A thread is the smallest

execution entity and represents a single instance of the kernel.

The execution of the kernel is controlled by the host program

processed by the CPU.

The mapping of the algorithm for the construction of group

character tables to the GPU is explained using Example 2.

The matrix 2

3C   in (3) has the following block structure:

00 01 02

2

3 10 11 12

20 21 22

B B B

C B B B

B B B

 
   =   
  

. (4)

Blocks Bx,y (x, y = 0, 1, 2) are the character tables for C3

multiplied by the elements of the matrix [C3]. Therefore, each

block can be represented as:

00 01 02

, , 3 , 10 11 12 , ,

20 21 22

[] ,x y x y x y x y i j

a a a

B c C c a a a c a

a a a

 
   = ⋅ = ⋅ = ⋅   
  

 (5)

where { }, , 1 2, 1, ,x y i jc a e e∈ , x, y, i, j = 0,1,2.

To each block we assign a thread t = (x, y, ai,j), x, y, i, j = 0,

1, 2. Each thread performs a multiplication of [C3] by a scalar,

as in (5). Threads are organized into a two-dimensional (x, y)

array corresponding to the matrices to be computed. Fig. 1

represents the mapping of the character table computations to

the GPU threads. Each thread processes a single block, which

is indicated by a different color in Fig. 1.

For the group 2

3C in Example 2, we have nine threads in the

first and only step of the algorithm (since this example

involves only one Kronecker product), each performing the

operation from (5) in parallel. In this case, indices of memory

locations, where a thread t(x, y, ai,j) stores the first element

(, 0,0x yc a⋅) of the block, are computed as:

 33 3startElement x y← ⋅ + ⋅ . (6)

Figure 1. Mapping of the computations to the GPU threads for
Example 2.

I C E S T 2012 28-30 JUNE, 2012, VELIKO TARNOVO, BULGARIA

191

Indices of memory locations for the rest of the elements

(, ,x y i jc a⋅ , x, y, i, j = 0, 1, 2, except for the case i = j = 0) in a

computed block are determined as:
23nextElement startElement i j← + ⋅ + . (7)

The results of the computations are stored in the GPU

global memory which has a linear layout. Formulas for the

computation of the memory location indices ((6) and (7)) lead

to the GPU global memory access pattern which is, for

Example 2, depicted in Fig. 2. Coloring of the blocks and the

memory locations in this figure corresponds to the thread

coloring in Fig. 1.

In the general case, in the k
th

 step of the algorithm, we

perform the Kronecker product of a (p
k

× p
k
) matrix by the

(p × p) matrix, and the result is a (pk+1 × pk+1) matrix.

Therefore, there are p
2
 active threads in the first step of the

algorithm, while in the k
th

 step, there are p
2k

active threads.

The index of the GPU memory location for the first entry

(, 0,0x yc a⋅) of the block is determined as:

2 ,kstartElement x p y p+← ⋅ + ⋅ (8)

The indices of the memory locations for the other elements

(, ,x y i jc a⋅ , i, j = 0, 1,…, p-1, except for the case i = j = 0)) in a

block are:
1knextElement startElement i p j p+← + ⋅ + ⋅ . (9)

C. Features of the Mapping

The proposed method for computing the character tables

has the following features:

1. The character table is stored as a vector of length p
2m

obtained by the concatenation of rows of [
m

pC]. This

allows reading the values of characters directly without

any reordering.

2. Elements of [m

pC] computed by threads with the same

first index and the successive second index are stored

in neighboring memory locations. This automatically

allows memory coalescing, due to which multiple data

accesses to the GPU global memory are performed as a

single memory transaction [2, 12].

D. Algorithm Implementation

A GPGPU program consists of two parts:

1. Host program, which executes on the CPU and creates

and controls the context for the execution of kernels as

well as allocates and transfers data to the GPU

memory.

2. Device program, which is processed on the GPU and

implements the SPMD kernels.

In the presented OpenCL implementation, the host program

determines the character table for the cyclic subgroup Cp

through (1). Notice that not all of the characters of Cp need to

be computed by using (1), since, e.g.,
p i ie e

∗
− = , for i = 1, 2,

…, / 2 1p −   . Thus, we compute half of the rows of the

character table for Cp, while other rows are determined by

using this property.

The host allocates GPU global memory space for two (p
m

×

pm) matrices that are used as buffers to store the results of the

application of the Kronecker product. This minimizes the

communication between the host and the device, which is a

bottleneck in the GPU computing [8, 12, 13]. Note that we

have to reserve the space for (pm × pm) matrices at the

beginning of the computation, since the size of the GPU

buffers cannot be changed after their creation, otherwise, we

would have to create buffers and transfer data between the

host and the device for each step of the algorithm, as the

resulting intermediate matrices increase in size. To minimize

the memory bandwidth occupation on the GPU itself, we use

the technique of buffer swapping [7]. For odd-numbered

steps, the first matrix is used as the input to the kernel and the

second matrix as the output. For even-numbered steps, the

order is reversed.

The character table for Cp is stored in a (p × p) matrix and it

is used as the second operand in the Kronecker product

operation in each step. Since it is of a small size, we keep it in

the constant GPU memory, which is cached. This allows

much faster access and leads to improved program

performance [12].

The Algorithm 1 presents a pseudo-code for the device

program. Code in lines 2 and 6 implements (8) and (9),

respectively. Since the characters of finite Abelian groups are

complex numbers, elements of
k

pC   , pC   , and
1k

pC
+   are

stored in the GPU buffers using the float2 OpenCL vector

data type [10]. The first component in the vector variable

stores the real part and the second component the imaginary

part of the complex number.

Figure 2. GPU global memory access pattern for Example 2.

Algorithm 1 Pseudo-code for the device program

1: x, y ← acquire thread indices in the two-dimensional grid

2: startElement ← x · pk+2 + y · p

3: adr1 ← x · pk + y

4: for i = 0 to p-1 do

5: for j = 0 to p-1 do

6: nextElement ← startElement + i · pk+1 + j

7: adr2 ← i · p + j

8: 1k

pC +   (nextElement).re ← k

pC   (adr1).re · pC   (adr2).re –

 k

pC   (adr1).im · pC   (adr2).im

9: 1k

pC +   (nextElement).im ← k

pC   (adr1).re · pC   (adr2).im +

 k

pC   (adr1).im · pC   (adr2).re

I C E S T 2012 28-30 JUNE, 2012, VELIKO TARNOVO, BULGARIA

192

TABLE II SPECIFICATION OF TEST PLATFORMS

Platform A B

CPU
AMD Phenom II N830

triple-core (2.1GHz)

Intel Core i7-920

quad-core (2.66GHz)

RAM 4GB DDR3 1066MHz 12GB DDR3-2000

OS Windows 7 Ultimate (64-bit)

IDE MS Visual Studio 2010 Ultimate

SDK AMD APP 2.6 Nvidia GPU Computing 4.0

GPU

engine speed

memory

processors

ATI Radeon 5650

650 MHz

1 GB GDDR3 800 MHz

80

Nvidia GTX 650 Ti

900 MHz

1 GB GDDR5 4.2 GHz

384

I. EXPERIMENTAL RESULTS

The experiments reported in this section are performed

using two hardware platforms, labeled A and B, respectively,

and specified in Table II. The GPU kernel performance

analysis is done through the application of AMD APP Profiler

2.4 (for A) and Nvidia Parallel Nsigth 2.1 (for B), in

accordance with instructions provided in [2, 12].

The referent C/C++ implementation uses the complex data

type from the Standard Template Library (STL) for the

representation of the values of group characters. This data

structure best corresponds to the float2 OpenCL vector data

type [10] used for the same purpose in the GPU

implementation. The referent C/C++ implementation is

compiled for the x64 platform using the MS C++ compiler set

to the maximum level of performance-oriented optimizations.

The results of the experiments performed on both test

platforms for the construction of the character table for the

groups
3

mC , m = 1, 2,…, 8, are presented in Fig. 3. Notice that

for p = 3 and m = 8, the size of the character table is pm × pm =

3
8

× 3
8

= 6561 × 6561, and, therefore, to complete the task, we

have to compute and store 43 046 721 complex numbers. The

OpenCL implementation processed on the GPUs outperforms

the referent CPU C/C++ implementation on both platforms

and for all values of m used in the experiments. The speed-up

is almost constant throughout the range for m, and it goes up

to a factor of 7.8× , on the test platform A, and up to a factor

of 8.2× on the platform B.

II. CONCLUSIONS

In this paper, we propose a method for the construction of

characters of finite Abelian groups of the

form ({0,1,..., 1} ,)m m

p pG C p= = − ⊕ , using the graphics

processing unit (GPU) as the computational platform. We

identify the sources of the parallelism available in the

algorithm for construction of the character table for G

formulated in terms of the Kronecker product. Based on this

analysis, we devise a mapping of the computations to the

SPMD processing model of the GPU and develop an OpenCL

implementation of the algorithm. The experimental results

obtained through the comparison of the proposed solution and

the referent C/C++ implementation of the same algorithm

show speed-ups of up to 7.8× and 8.2× , depending on the

platform, when using the GPU and, thus, confirm the validity

of the proposed approach.

REFERENCES

[1] T. M. Aamodt, “Architecting graphics processors for non-

graphics compute acceleration”, in Proc. 2009 IEEE PacRim

Conf. Comm., Comp. & Sig. Proc., Victoria, BC, Canada, 2009.

[2] AMD, “AMD Accelerated Parallel Processing OpenCL

Programming Guide”, available from: http://developer.amd.com

/sdks/AMDAPPSDK, [accessed 1 April 2012].

[3] T. Apostol, Introduction to Analytic Number Theory, Springer-

Verlag, New York, USA, 1976.
[4] M. Clausen, “Fast generalized Fourier transforms”, Theoretical

Computer Science, No. 67, 1989, pp. 55-63.

[5] J. W. Cooley and J. W. Tukey, ”An algorithm for the machine

calculation of complex Fourier series”, Mathematics of

Computation, No. 90, 1965, pp. 297-301.

[6] D. S. Dummit and R. M. Foote, Abstract Algebra, John Wiley &
Sons, 2003.

[7] D. B. Gajić, R. S. Stanković, "GPU accelerated computation of

fast spectral transforms", Facta Universitatis - Series:

Electronics and Energetics, Vol. 24, No. 3, University of Niš,

Niš, Serbia, 2011, pp. 483-499.

[8] B. R. Gaster, L. Howes, D. Kaeli, P. Mistry, and D. Schaa,
Heterogeneous Computing with OpenCL, Elsevier, 2011.

[9] M. G. Karpovsky, R. S. Stanković, and J. T. Astola, Spectral

Logic and Its Applications for the Design of Digital Devices,

Wiley-Interscience, 2008.

[10] Khronos,”OpenCL Specification 1.2”, Khronos OpenCL
Working Group, 2011.

[11] D. K. Maslen and D. N. Rockmore, “Generalized FFTs – A

survey of some recent results”, in DIMACS Workshop in Groups

and Computation, 1998, pp. 183-238.

[12] Nvidia, “OpenCL Best Practices Guide”, available from:

http://developer.nvidia.com/nvidia-gpu-computing-

documentation, [accessed 1 April 2012].

[13] J. Owens, M. Houston, D. Luebke, S. Green, J. Stone, and J.

Phillips, “GPU computing”, Proc. of the IEEE, Vol. 96, No. 5,

2008, pp. 279–299.

[14] C. C. Pinter, A Book of Abstract Algebra, Dover, 2010.

[15] W. Rudin, Fourier Analysis on Groups, Wiley, 1990.
[16] R. S. Stanković, and J. T. Astola, Spectral Interpretation of

Decision Diagrams, Springer, New York City, USA, 2003.

[17] M. R. Stojić, M. S. Stanković, and R. S. Stanković, Diskretne

transformacije u primeni, Nauka, Beograd, 1993, (in Serbian).

[18] M. A. Thornton, “Spectral transforms of mixed-radix MVL

functions“, in Proc. IEEE Int. Symp. on Multiple-Valued Logic
(ISMVL), Tokyo, Japan, May, 2003, pp. 329-333.

[19] M. A. Thornton, R. Drechsler and D. M. Miller, Spectral

Techniques in VLSI CAD, Kluwer Academic Publishers, 2001.

Figure 3. Computation times for the groups

3

mC , m = 1, 2,…, 8, on

CPUs and GPUs for the test platforms specified in Table II.

I C E S T 2012 28-30 JUNE, 2012, VELIKO TARNOVO, BULGARIA

193

